Experimental verification of metamaterial based subwavelength microwave absorbers

We designed, implemented, and experimentally characterized electrically thin microwave absorbers by using the metamaterial concept. The absorbers consist of (i) a metal back plate and an artificial magnetic material layer; (ii) metamaterial back plate and a resistive sheet layer. We investigated absorber performance in terms of absorbance, fractional bandwidth, and electrical thickness, all of which depend on the dimensions of the metamaterial unit cell and the distance between the back plate and metamaterial layer. As a proof of concept, we demonstrated a λ/4.7 thick absorber of type I, with a 99.8% absorption peak along with a 8% fractional bandwidth. We have shown that as the electrical size of the metamaterial unit cell decreases, the absorber electrical thickness can further be reduced. We investigated this concept by using two different magnetic metamaterial inclusions: the split-ring resonator (SRR) and multiple SSR (MSRR). We have also demonstrated experimentally a λ/4.7 and a λ/4.2 thick absorber...

[1]  Iñigo Ederra,et al.  Magnetotunable left-handed FeSiB ferromagnetic microwires. , 2010, Optics letters.

[2]  C M Soukoulis,et al.  Effective medium theory of left-handed materials. , 2004, Physical review letters.

[3]  Z. Sipus,et al.  Waveguide miniaturization using uniaxial negative permeability metamaterial , 2005, IEEE Transactions on Antennas and Propagation.

[4]  Ekmel Ozbay,et al.  A planar metamaterial: Polarization independent fishnet structure , 2008 .

[5]  A. Hernando,et al.  High-frequency behavior of amorphous microwires and its applications , 2005 .

[6]  Eleftherios N. Economou,et al.  Negative‐Index Materials: New Frontiers in Optics , 2006 .

[7]  Ekmel Ozbay,et al.  Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture. , 2009, Optics express.

[8]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[9]  E. Ozbay,et al.  Direct observation of negative refraction at the millimeter-wave regime by using a flat composite metamaterial , 2009 .

[10]  Ekmel Ozbay,et al.  Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials , 2009 .

[11]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[12]  E. Ozbay,et al.  Theoretical Study and Experimental Realization of a Low-Loss Metamaterial Operating at the Millimeter-Wave Regime: Demonstrations of Flat- and Prism-Shaped Samples , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  J. Vardaxoglou,et al.  Frequency and beam reconfigurable antenna using photoconducting switches , 2006, IEEE Transactions on Antennas and Propagation.

[14]  D. Larkman,et al.  Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. , 2001, Science.

[15]  F. Bilotti,et al.  Theory and Simulations of a Conformal Omni- Directional Subwavelength Metamaterial Leaky-Wave Antenna , 2007, IEEE Transactions on Antennas and Propagation.

[16]  N. Engheta,et al.  Subwavelength, Compact, Resonant Patch Antennas Loaded With Metamaterials , 2007, IEEE Transactions on Antennas and Propagation.

[17]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[18]  F. Bilotti,et al.  Design of Miniaturized Metamaterial Patch Antennas With $\mu$-Negative Loading , 2008, IEEE Transactions on Antennas and Propagation.

[19]  Filiberto Bilotti,et al.  Design of Metamaterial-Based Resonant Microwave Absorbers with Reduced Thickness and Absence of a Metallic Backing , 2009 .

[20]  Mario Sorolla,et al.  Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies , 2004 .

[21]  S. Tretyakov,et al.  On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[22]  GHz magnetic response of split ring resonators , 2004 .

[23]  E. Ozbay,et al.  Characterization and tilted response of a fishnet metamaterial operating at 100 GHz , 2008 .

[24]  K. Aydin,et al.  Subwavelength resolution with a negative-index metamaterial superlens , 2007 .

[25]  A. Toscano,et al.  Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions , 2007, IEEE Transactions on Microwave Theory and Techniques.

[26]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[27]  Ekmel Ozbay,et al.  Low-temperature behavior of magnetic metamaterial elements , 2009 .

[28]  Ekmel Ozbay,et al.  Electrically small split ring resonator antennas , 2007 .

[29]  A. Hernando,et al.  Electromagnetic Wave Absorbing Material Based on Magnetic Microwires , 2008, IEEE Transactions on Magnetics.

[30]  K. Sarabandi,et al.  A substrate for small patch antennas providing tunable miniaturization factors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[31]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[32]  E. Ozbay,et al.  Oblique response of a split-ring-resonator-based left-handed metamaterial slab. , 2009, Optics letters.

[33]  Ekmel Ozbay,et al.  Radiation properties of a split ring resonator and monopole composite , 2007 .

[34]  Ekmel Ozbay,et al.  Miniaturized negative permeability materials , 2007 .

[35]  G. Eleftheriades,et al.  A compact and low-profile metamaterial ring antenna with vertical polarization , 2005, IEEE Antennas and Wireless Propagation Letters.

[36]  Ekmel Ozbay,et al.  Transmission and reflection properties of composite double negative metamaterials in free space , 2003 .

[37]  M. Kafesaki,et al.  Magnetic response of split-ring resonators in the far-infrared frequency regime. , 2005, Optics letters.

[38]  Filiberto Bilotti,et al.  An SRR based microwave absorber , 2006 .

[39]  Sangeeta Chakrabarti,et al.  Cloaking and imaging effects in plasmonic checkerboards of negative ∈ and μ and dielectric photonic crystal checkerboards , 2007 .

[40]  D. Werner,et al.  A genetic algorithm approach to the design of ultra‐thin electromagnetic bandgap absorbers , 2003 .

[41]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[42]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[43]  V. Varadan,et al.  A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies , 1989 .

[44]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[45]  F. Bilotti,et al.  Electromagnetic cloaking devices for TE and TM polarizations , 2008 .

[46]  A. Toscano,et al.  Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples , 2007, IEEE Transactions on Antennas and Propagation.

[47]  J. Pendry,et al.  Metamaterials in the sunshine , 2006, Nature materials.