Extracting and Visualizing Individual Space-Time Paths: An integration of GIS and KDD in Transport Demand Modeling

The disaggregate activity-based approach for transport demand modeling requires the acquisition, management, analysis, and visualization of very large, multivariate spatial datasets in order to capture and extract meaningful spatio-temporal patterns and relationships. Knowledge Discovery in Databases (KDD) is a conceptual and methodological framework that was developed in the last decade to address the issue of transforming large amounts of raw geographic data into knowledge. Based on the KDD framework, this paper describes the steps involved to build individual space-time paths from an origin-destination survey and presents the functionalities of an object-oriented GIS prototype to extract and dynamically visualize individual space-time paths. The prototype sustains seamless spatio-temporal queries to the database and provides cast-based animation that mimics continuous individual movement on the street network.

[1]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[2]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[3]  R. Golledge,et al.  Computational-Process Modelling of Household Activity Scheduling , 2004 .

[4]  Tommy Gärling,et al.  Computer Simulation of Household Activity Scheduling , 1998 .

[5]  Danielle J. Marceau,et al.  Development of a Temporal Extension to Query Travel Behavior Time Paths Using an Object-Oriented GIS , 2004, GeoInformatica.

[6]  Usama M. Fayyad,et al.  Knowledge Discovery in Databases: An Overview , 1997, ILP.

[7]  Edward McCormack,et al.  What transportation modeling needs from a GIS: a conceptual framework , 1998 .

[8]  Dick Ettema,et al.  Theories and models of activity patterns , 1997 .

[9]  Reginald G. Golledge THE RELATIONSHIP BETWEEN GEOGRAPHIC INFORMATION SYSTEMS AND DISAGGREGATE BEHAVIORAL TRAVEL MODELING , 1998 .

[10]  Michael Boggs,et al.  Mastering UML with Rational Rose , 1999 .

[11]  Peter V. Coveney,et al.  Frontiers of Complexity: The Search for Order in a Chaotic World, Peter Coveney and Roger Highfield. 1995. Random House, Inc., New York, NY. 480 pages. ISBN: 0-449-90832-1. $27.50 , 1996 .

[12]  Timothy L. Nyerges,et al.  GEOGRAPHIC INFORMATION SYSTEMS IN TRANSPORTATION , 1989 .

[13]  Andrzej Bargiela,et al.  A new framework for the integration, analysis and visualisation of urban traffic data within geographic information systems , 2000 .

[14]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[15]  Martin Trépanier,et al.  Analyse orientée-objet et totalement désagrégée des données d'enquêtes ménages origine-destination , 2001 .

[16]  Mark Gahegan,et al.  The Integration of Geographic Visualization with Knowledge Discovery in Databases and Geocomputation , 2001 .

[17]  Phillip C. Muehrcke Map use: Reading, analysis, and interpretation , 1983 .

[18]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[19]  Download Book,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[20]  Jean-Claude Thill,et al.  Geographic information systems for transportation in perspective , 2000 .

[21]  E. Miller,et al.  A computerized household activity scheduling survey , 2000 .

[22]  Peter R. Stopher,et al.  A synthesis of GIS and activity-based travel-forecasting , 1998 .

[23]  Robert B. Dial Urban Transportation Planning System: Philosophy and Function , 1967 .

[24]  Eric J. Miller,et al.  URBAN TRANSPORTATION PLANNING: A DECISION-ORIENTED APPROACH , 1984 .

[25]  Mei-Po Kwan,et al.  A Review of Object-Oriented Approaches in Geographical Information Systems for Transportation Modeling , 1996 .

[26]  Angela Lee,et al.  Hagerstrand Revisited: Interactive Space-Time Visualizations of Complex Spatial Data , 1999, Informatica.

[27]  Danielle J. Marceau,et al.  Spatio‐Temporal Object‐Oriented Data Model for Disaggregate Travel Behavior , 2002, Trans. GIS.

[28]  Stan Hayward Computers for animation , 1984 .

[29]  May Yuan Representing Spatiotemporal Processes to Support Knowledge Discovery in GIS databases , 1998 .

[30]  Mark Monmonier,et al.  Authoring Graphic Scripts: Experiences and Principles , 1992 .

[31]  A. MacEachren,et al.  Research Challenges in Geovisualization , 2001, KN - Journal of Cartography and Geographic Information.

[32]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[33]  M Theriault,et al.  MODELLING TRAVEL ROUTE AND TIME WITHIN GIS : ITS USE FOR PLANNING , 1998 .

[34]  Mei-Po Kwan,et al.  Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set , 2000 .

[35]  Andrés Molina Aguilar,et al.  Integrating GIS, Circular Statistics and KDSD for Modelling Spatial Data: A Case Study , 2002 .