In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate.

[1]  Jaehwan Kim,et al.  Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate) , 2011 .

[2]  Cai Zhijiang,et al.  Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate) , 2011 .

[3]  S. Ribeiro,et al.  Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes , 2011 .

[4]  Hui-Huang Chen,et al.  Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation , 2011 .

[5]  Shih-bin Lin,et al.  In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. , 2010, Bioresource technology.

[6]  Emiliano Bilotti,et al.  Bacterial cellulose–poly(vinyl alcohol) nanocomposites prepared by an in-situ process , 2010 .

[7]  K. Cheng,et al.  Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property , 2009 .

[8]  Dieter Klemm,et al.  Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives , 2009 .

[9]  J. Martínez‐Pastor,et al.  Development of self-assembled bacterial cellulose–starch nanocomposites , 2009 .

[10]  M. Laborie,et al.  Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. , 2007, Biomacromolecules.

[11]  Wojciech Czaja,et al.  Structural investigations of microbial cellulose produced in stationary and agitated culture , 2004 .

[12]  D. Klemm,et al.  Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium , 2004 .

[13]  J. Sugiyama,et al.  Cp/mas 13c nmr and Electron Diffraction Study of Bacterial Cellulose Structure Affected by Cell Wall Polysaccharides , 2002 .

[14]  M. Fujita,et al.  Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides , 2002 .

[15]  J. Sugiyama,et al.  Structural modification of bacterial cellulose , 2000 .

[16]  Hiroyuki Yamamoto,et al.  In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation , 1996 .

[17]  Rajai H. Atalla,et al.  Influence of hemicelluloses on the aggregation patterns of bacterial cellulose , 1995 .

[18]  R Mayer,et al.  Cellulose biosynthesis and function in bacteria. , 1991, Microbiological reviews.

[19]  D. Byrom,et al.  Polymer synthesis by microorganisms: technology and economics , 1987 .

[20]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.

[21]  C. Haigler,et al.  Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Y. Umesaki,et al.  Effect of Tween 80 on glucosyltransferase production in Streptococcus mutans , 1977, Applied and environmental microbiology.

[23]  D. J. Johnson,et al.  The resolution of multipeak data in fibre science , 1971 .

[24]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[25]  M. Schramm,et al.  Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. , 1954, Journal of general microbiology.

[26]  Dieter Klemm,et al.  Nanocelluloses as Innovative Polymers in Research and Application , 2006 .

[27]  Y. Sugano,et al.  Effect of Addition of Water‐Soluble Polysaccharides on Bacterial Cellulose Production in a 50‐L Airlift Reactor , 2001, Biotechnology progress.