Heterogeneity of human lympho-myeloid progenitors at the single cell level

[1]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[2]  Thomas Lengauer,et al.  DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation , 2016, Cell stem cell.

[3]  Michael J. Ziller,et al.  Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells , 2016, Cell.

[4]  L. Mirny,et al.  Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. , 2016, Immunity.

[5]  P. Vyas,et al.  Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage , 2016, The Journal of experimental medicine.

[6]  A. Reinisch,et al.  A Humanized Ossicle-niche Xenotransplantation Model Enables Improved Human Leukemic Engraftment , 2016, Nature Medicine.

[7]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[8]  Cyrille F. Dunant,et al.  Distinct routes of lineage development reshape the human blood hierarchy across ontogeny , 2016, Science.

[9]  Irving L. Weissman,et al.  Hoxb5 marks long-term haematopoietic stem cells revealing a homogenous perivascular niche , 2016, Nature.

[10]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[11]  T. Schumacher,et al.  The Branching Point in Erythro-Myeloid Differentiation , 2015, Cell.

[12]  Fabian J. Theis,et al.  destiny: diffusion maps for large-scale single-cell data in R , 2015, Bioinform..

[13]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[14]  J. Dürig,et al.  Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages , 2015, Stem cell reports.

[15]  Berthold Göttgens,et al.  Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. , 2015, Cell stem cell.

[16]  Fabian J. Theis,et al.  Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations , 2015, Cell stem cell.

[17]  M. Nussenzweig,et al.  Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow , 2015, The Journal of experimental medicine.

[18]  Tim Holland-Letz,et al.  Fundamental properties of unperturbed haematopoiesis from stem cells in vivo , 2015, Nature.

[19]  Fabian J Theis,et al.  Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements , 2015, Nature Biotechnology.

[20]  Bernd Giebel,et al.  Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages , 2014, Stem cell reports.

[21]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[22]  R. Eils,et al.  Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. , 2014, Cell stem cell.

[23]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[24]  S. Linnarsson,et al.  Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. , 2014, Cancer cell.

[25]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[26]  S. Orkin,et al.  Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. , 2013, Cell stem cell.

[27]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[28]  H. Nakauchi,et al.  Clonal Analysis Unveils Self-Renewing Lineage-Restricted Progenitors Generated Directly from Hematopoietic Stem Cells , 2013, Cell.

[29]  I. Macaulay,et al.  Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy , 2013, Nature.

[30]  S. Morrison,et al.  SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. , 2013, Cell stem cell.

[31]  T. Schumacher,et al.  Diverse and heritable lineage imprinting of early haematopoietic progenitors , 2013, Nature.

[32]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[33]  J. Baijer,et al.  Assessment of Human Multi-Potent Hematopoietic Stem/Progenitor Cell Potential Using a Single In Vitro Screening System , 2012, PloS one.

[34]  G. Crooks,et al.  Lymphoid Priming in Human Bone Marrow Begins Prior to CD10 Expression with Up-Regulation of L-selectin , 2012, Nature Immunology.

[35]  N. Aghaeepour,et al.  Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. , 2012, Cell stem cell.

[36]  D. Bonhomme,et al.  Cytokines and culture medium have a major impact on human in vitro T-cell differentiation. , 2011, Blood cells, molecules & diseases.

[37]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[38]  P. Vyas,et al.  Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. , 2011, Cancer cell.

[39]  K. Garrett,et al.  The Density of CD10 Corresponds to Commitment and Progression in the Human B Lymphoid Lineage , 2010, PloS one.

[40]  J. Dick,et al.  Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development , 2010, Nature Immunology.

[41]  Nathan C Boles,et al.  Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. , 2010, Cell stem cell.

[42]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[43]  Andreas Trumpp,et al.  Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair , 2008, Cell.

[44]  I. Weissman,et al.  Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. , 2007, Cell stem cell.

[45]  David Bryder,et al.  Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. , 2007, Cell stem cell.

[46]  Ryan Brinkman,et al.  Long-term propagation of distinct hematopoietic differentiation programs in vivo. , 2007, Cell stem cell.

[47]  Shamit Soneji,et al.  Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. , 2007, Immunity.

[48]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Lina A. Thoren,et al.  Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential A Revised Road Map for Adult Blood Lineage Commitment , 2005, Cell.

[50]  Irving L. Weissman,et al.  Prospective isolation of human clonogenic common myeloid progenitors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  W. Vainchenker,et al.  Individual CD34+CD38lowCD19-CD10- progenitor cells from human cord blood generate B lymphocytes and granulocytes. , 1997, Blood.

[52]  A. Galy,et al.  Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. , 1995, Immunity.