Echo Characterization Based on Maximum-Likelihood Estimation for Antenna-Measurement Correction [Measurements Corner]

Antenna measurement systems could be affected by multipath effects resulting in reflected beams that might modify the measured values. In this paper, the use of the Maximum Likelihood estimator provides the basis of several post-processing methods able to estimate the echo parameters in imperfect antenna measurements. Once the reflections are characterized, these parameters are used to correct the measured values and to retrieve the actual radiation pattern corresponding to the antenna under test. Some different techniques are proposed in order to perform such cancellation. Experimental validation is also presented to show the accuracy of the described methods.

[1]  Joe Wiart,et al.  Correlate measurements at different test sites , 1999 .

[2]  D. A. Leatherwood,et al.  Plane wave, pattern subtraction, range compensation , 2001 .

[3]  Zhou Du,et al.  Generation of Free Space Radiation Patterns From Non-Anechoic Measurements Using Chebyshev Polynomials , 2010, IEEE Transactions on Antennas and Propagation.

[4]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[5]  G. Burrell,et al.  Antenna radiation pattern measurement using time-to-frequency transformation (TFT) techniques , 1973 .

[6]  D. Marcano,et al.  Synthesis of antenna arrays using genetic algorithms , 1995, Proceedings of First International Caracas Conference on Devices, Circuits and Systems.

[7]  J. A. Ferreira,et al.  Pattern synthesis of conformal arrays by the simulated annealing technique , 1997 .

[8]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[9]  Robert F. Harrison,et al.  Digital communications channel equalization using the Kernel Adaline , 2002, IEEE Trans. Commun..

[10]  Marco Antonio Luersen,et al.  Globalized Nelder-Mead method for engineering optimization , 2002 .

[11]  M. Bellanger Adaptive filter theory: by Simon Haykin, McMaster University, Hamilton, Ontario L8S 4LB, Canada, in: Prentice-Hall Information and System Sciences Series, published by Prentice-Hall, Englewood Cliffs, NJ 07632, U.S.A., 1986, xvii+590 pp., ISBN 0-13-004052-5 025 , 1987 .

[12]  Manuel Sierra-Castañer,et al.  New Reflection Suppression Method in Antenna Measurement Systems Based on Diagnostic Techniques , 2011, IEEE Transactions on Antennas and Propagation.

[13]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[14]  Zwi Altman,et al.  Gabor schemes for analyzing antenna measurements , 2001 .

[15]  I. Santamaría,et al.  Design of linear-phase FIR filters using support vector regression approach , 2003 .

[16]  José Carlos Príncipe,et al.  Maximum margin equalizers trained with the Adatron algorithm , 2003, Signal Process..

[17]  F. Las-Heras,et al.  Support vector regression for the design of array antennas , 2005, IEEE Antennas and Wireless Propagation Letters.

[18]  Wang You-hua,et al.  Adaptive simulated annealing for the optimal design of electromagnetic devices , 1996 .

[19]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[20]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[21]  L. P. Ligthart,et al.  Modelling and pattern error correction of time domain far-field antenna measurements , 2001 .

[22]  Fernando Las-Heras,et al.  Antenna pattern correction using Cauchy-Gauss modelling , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[23]  G. Leon,et al.  Measurement of Low-Gain Antennas in Non-Anechoic Test Sites through Wideband Channel Characterization and Echo Cancellation [Measurements Corner] , 2009, IEEE Antennas and Propagation Magazine.

[24]  Y. Wu,et al.  Maximum likelihood joint channel and data estimation using genetic algorithms , 1998, IEEE Trans. Signal Process..

[25]  R. G. Ayestaran,et al.  Realistic Antenna Array Synthesis in Complex Environments Using a MOM-SVR Approach , 2009 .