On the PMEPR of Binary Golay Sequences of Length $2^{n}$

In this paper, some questions on the distribution of the peak-to-mean envelope power ratio (PMEPR) of standard binary Golay sequences are solved. For n odd, we prove that the PMEPR of each standard binary Golay sequence of length 2<sup>n</sup> is exactly 2, and determine the location(s), where peaks occur for each sequence. For n even, we prove that the envelope power of such sequences can never reach 2<sup>n+1</sup> at time points t ∈ {(v/2<sup>u</sup>)|0 ≤ v ≤ 2<sup>u</sup>, v,u ∈ N}. We further identify eight sequences of length 2<sup>4</sup> and eight sequences of length 2<sup>6</sup> that have PMEPR exactly 2, and raise the question whether, asymptotically, it is possible for standard binary Golay sequences to have PMEPR less than 2 - ϵ, where, ϵ > 0.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  J. E. Littlewood,et al.  On Polynomials ∑ ±nzm,∑ eαminzm,z=e0i , 1966 .

[3]  L. Carlitz,et al.  Note on the Shapiro polynomials , 1970 .

[4]  John Brillhart On the Rudin-Shapiro polynomials , 1973 .

[5]  B. Sundar Rajan,et al.  On the PAPR of binary Reed-Muller OFDM codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  K. Paterson,et al.  Golay Complementary Sequences , 2003 .

[7]  Branislav M. Popovic,et al.  Synthesis of power efficient multitone signals with flat amplitude spectrum , 1991, IEEE Trans. Commun..

[8]  Simon Litsyn Peak power control in multicarrier communications , 2007 .

[9]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[10]  John Konvalina,et al.  Palindrome-Polynomials with Roots on the Unit Circle , 2004 .

[11]  Chintha Tellambura,et al.  Generalised Rudin-Shapiro Constructions , 2001, Electron. Notes Discret. Math..

[12]  J. Brillhart,et al.  Cyclotomic properties of the Rudin-Shapiro polynomials. , 1976 .

[13]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[14]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[15]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.

[16]  M. Golay Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.

[17]  Kai-Uwe Schmidt,et al.  On cosets of the generalized first-order reed-muller code with low PMEPR , 2006, IEEE Transactions on Information Theory.

[18]  S. Budisin,et al.  New complementary pairs of sequences , 1990 .

[19]  Kenneth G. Paterson,et al.  Sequences for OFDM and Multi-Code CDMA: Two Problems in Algebraic Coding Theory , 2001, SETA.

[20]  Michael W Cammarano,et al.  Integer Maxima in Power Envelopes of Golay Codewords , 1999 .

[21]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[22]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[23]  V. V. Mullin,et al.  Prospects of application of vacuum switch electronic devices in power electronics , 2010, 2010 International Conference on Actual Problems of Electron Devices Engineering.

[24]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .