On Clustering fMRI Time Series

Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do not indicate whether sets of voxels are activated in a similar way or in different ways. Typically, delays between two activated signals are not identified. In this article, we use clustering methods to detect similarities in activation between voxels. We employ a novel metric that measures the similarity between the activation stimulus and the fMRI signal. We present two different clustering algorithms and use them to identify regions of similar activations in an fMRI experiment involving a visual stimulus.

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[3]  J. Mcqueen Some methods for classi cation and analysis of multivariate observations , 1967 .

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[6]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[7]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[8]  B. Moore,et al.  ART1 and pattern clustering , 1989 .

[9]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[10]  Geoffrey E. Hinton,et al.  Proceedings of the 1988 Connectionist Models Summer School , 1989 .

[11]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[12]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[13]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[14]  川島 隆太 First International Conference on Functional Mapping of the Human Brain , 1994 .

[15]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[16]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[17]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[18]  The Second International Conference on Functional Mapping of the Human Brain , 1995 .

[19]  R. Somorjai,et al.  Activation and deactivation in functional brain images , 1996, NeuroImage.

[20]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[21]  J Xiong,et al.  Assessment and optimization of functional MRI analyses , 1996, Human brain mapping.

[22]  R. Somorjai,et al.  The utility of fuzzy clustering in identifying diverse activations in fMRI , 1996, NeuroImage.

[23]  Lars Kai Hansen,et al.  Unsupervised learning and generalization , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[24]  Egill Rostrup,et al.  Change of visually induced cortical activation patterns during development , 1996, The Lancet.

[25]  R Baumgartner,et al.  Fuzzy clustering of gradient‐echo functional MRI in the human visual cortex. Part I: Reproducibility , 1997, Journal of magnetic resonance imaging : JMRI.

[26]  C. Mountford Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging - Discussion , 1997 .

[27]  Peter Boesiger,et al.  Fuzzy membership vs. probability in cross correlation based fuzzy clustering of fMRI data , 1997 .

[28]  R Baumgartner,et al.  Fuzzy clustering of gradient‐echo functional MRI in the human visual cortex. Part II: Quantification , 1997, Journal of magnetic resonance imaging : JMRI.

[29]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[30]  Bruce R. Rosen,et al.  Comparison of two convolution models for fMRI time series , 1997 .

[31]  K. J. Friston,et al.  Statistical Models and Experimental Design , 1997 .

[32]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[33]  F. Å. Nielsen,et al.  Space-time analysis of fMRI by feature space clustering , 1998, NeuroImage.