Gravity-mediated dark matter annihilation in the Randall-Sundrum model

A bstractObservational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, 〈σv〉, which are consistent with the observed relic abundance in the case of spin-1 dark matter. We examine constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.

[1]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[2]  Gino Tosti,et al.  Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope , 2015, 1506.00013.

[3]  Myeonghun Park,et al.  Gravity-mediated (or composite) Dark Matter confronts astrophysical data , 2014, Journal of High Energy Physics.

[4]  Antonio Delgado,et al.  RS1, custodial isospin and precision tests , 2003 .

[5]  J. Hewett,et al.  750 GeV Diphoton Resonance in Warped Geometries , 2016, 1603.08250.

[6]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[7]  L. Vecchi WIMPs and Un-Naturalness , 2013, 1312.5695.

[8]  M. Carena,et al.  Electroweak constraints on warped models with custodial symmetry , 2007, hep-ph/0701055.

[9]  Rizzo,et al.  Phenomenology of the randall-sundrum gauge hierarchy model , 2000, Physical review letters.

[10]  Y. Grossman,et al.  Neutrino masses and mixings in non-factorizable geometry , 1999 .

[11]  Exact cross sections for the neutralino WIMP pair-annihilation , 2002, hep-ph/0202009.

[12]  M. D. Mauro,et al.  A quantitative study of AMS-02 e± data. What can we learn about dark matter? , 2016 .

[13]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[14]  Y. S. Tsai,et al.  Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data. , 2016, Physical review letters.

[15]  G. Servant,et al.  Cosmological consequences of nearly conformal dynamics at the TeV scale , 2011, 1104.4791.

[16]  R. Wilson Modern Cosmology , 2004 .

[17]  T. Rizzo,et al.  Bulk physics at a graviton factory , 2001, hep-ph/0104199.

[18]  J. Lykken,et al.  On Kaluza-Klein states from large extra dimensions , 1998, hep-ph/9811350.

[19]  J. Chiang,et al.  SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH FERMI-LAT DATA , 2015, 1503.02632.

[20]  A. Boveia,et al.  Simplified Models for Dark Matter and Missing Energy Searches at the LHC , 2014, 1409.2893.

[21]  Jonathan L. Feng,et al.  Precision Measurement of the $\left({e}^{+}+{e}^{-}\right)$ Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .

[22]  Qaisar Shafi,et al.  Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model , 2001 .

[23]  A. S. Mete,et al.  Simplified Models for Dark Matter Searches at the LHC , 2015, 1506.03116.

[24]  Holography and the electroweak phase transition , 2001, hep-th/0107141.

[25]  Myeonghun Park,et al.  Gravity-mediated (or composite) dark matter , 2013, 1306.4107.

[26]  K. Mawatari,et al.  Simplified dark matter models with a spin-2 mediator at the LHC , 2017, The European Physical Journal C.

[27]  Michael S. Turner,et al.  Cosmological Constraints on the Properties of Weakly Interacting Massive Particles , 1985 .

[28]  R. Sagdeev,et al.  Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. , 2016, Physical review letters.

[29]  J. Silk,et al.  Dark Matter in γ lines: Galactic Center vs. dwarf galaxies , 2016, 1608.00786.

[30]  L. A. Antonelli,et al.  Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies , 2016, 1601.06590.

[31]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[32]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[33]  Pengwei Xie,et al.  Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. , 2016, Physical review letters.

[34]  M. Baak,et al.  Updated status of the global electroweak fit and constraints on new physics , 2011, 1107.0975.

[35]  Myeonghun Park,et al.  The diphoton resonance as a gravity mediator of dark matter , 2015, 1512.06376.

[36]  R. Sagdeev,et al.  Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[37]  Joss Bland-Hawthorn,et al.  ON THE SHOULDERS OF GIANTS: PROPERTIES OF THE STELLAR HALO AND THE MILKY WAY MASS DISTRIBUTION , 2014, 1408.1787.

[38]  Enectali Figueroa-Feliciano,et al.  Dark Sectors 2016 Workshop: Community Report , 2016, 1608.08632.

[39]  M. V. Fernandes,et al.  H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center. , 2016, Physical review letters.

[40]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[41]  M. Krämer,et al.  Novel Dark Matter Constraints from Antiprotons in Light of AMS-02. , 2016, Physical review letters.

[42]  S. Huber,et al.  Flavor violation and warped geometry , 2003, hep-ph/0303183.

[43]  M. V. Fernandes,et al.  Search for photon-linelike signatures from dark matter annihilations with H.E.S.S. , 2013, Physical review letters.

[44]  J. Hewett,et al.  Brane-localized kinetic terms in the Randall-Sundrum model , 2002, hep-ph/0212279.

[45]  J. Hewett,et al.  Experimental probes of localized gravity: On and off the wall , 2000, hep-ph/0006041.

[46]  A. Pomarol,et al.  Bulk fields and supersymmetry in a slice of AdS , 2000 .

[47]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[48]  H. Georgi,et al.  Brane couplings from bulk loops , 2000, hep-ph/0012379.

[49]  A. Rozanov,et al.  Extending the Higgs sector: an extra singlet , 2015, 1503.01618.

[50]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[51]  J. Hewett,et al.  Bulk Gauge Fields in the Randall-Sundrum Model , 1999, hep-ph/9911262.

[52]  H. S. Bansil,et al.  Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2016 .