Controlled Nucleation of Lipid Nanoparticles

[1]  Juliane Nguyen,et al.  Nucleic acid delivery: the missing pieces of the puzzle? , 2012, Accounts of chemical research.

[2]  F. Szoka,et al.  Synthesis and characterization of novel zwitterionic lipids with pH-responsive biophysical properties. , 2012, Chemical communications.

[3]  F. Szoka,et al.  Inverse-phosphocholine lipids: a remix of a common phospholipid. , 2012, Journal of the American Chemical Society.

[4]  Suzanne M D'Addio,et al.  Controlling drug nanoparticle formation by rapid precipitation. , 2011, Advanced drug delivery reviews.

[5]  V. Guida Thermodynamics and kinetics of vesicles formation processes. , 2010, Advances in colloid and interface science.

[6]  Wyatt N Vreeland,et al.  Microfluidic mixing and the formation of nanoscale lipid vesicles. , 2010, ACS nano.

[7]  Robert Langer,et al.  Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. , 2010, ACS nano.

[8]  L. J. Lee,et al.  Ultrasound-enhanced microfluidic synthesis of liposomes. , 2010, Anticancer research.

[9]  K. G. Rajeev,et al.  Rational design of cationic lipids for siRNA delivery , 2010, Nature Biotechnology.

[10]  I. Kevrekidis,et al.  Protected peptide nanoparticles: experiments and brownian dynamics simulations of the energetics of assembly. , 2009, Nano letters.

[11]  Michael S. Goldberg,et al.  Development of lipidoid-siRNA formulations for systemic delivery to the liver. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[12]  B. Cabane,et al.  Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  Nan Zhang,et al.  Synthesis and properties of morpholino chimeric oligonucleotides , 2008 .

[14]  Robert Gurny,et al.  Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[15]  Wyatt N Vreeland,et al.  Microfluidic directed formation of liposomes of controlled size. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[16]  F. Szoka,et al.  Lipid-based Nanoparticles for Nucleic Acid Delivery , 2007, Pharmaceutical Research.

[17]  R. Prud’homme,et al.  Ostwald Ripening ofβ-Carotene Nanoparticles , 2007 .

[18]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[19]  L. Jeffs,et al.  A Scalable, Extrusion-Free Method for Efficient Liposomal Encapsulation of Plasmid DNA , 2005, Pharmaceutical Research.

[20]  Wyatt N Vreeland,et al.  Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. , 2004, Journal of the American Chemical Society.

[21]  J. Josserand,et al.  Mixing processes in a zigzag microchannel: finite element simulations and optical study. , 2002, Analytical chemistry.

[22]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[23]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[24]  F. Szoka,et al.  Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG--diortho ester--lipid conjugate. , 2001, Bioconjugate chemistry.

[25]  P. Cullis,et al.  Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. , 2001, Biochimica et biophysica acta.

[26]  Uchiyama,et al.  The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. , 1999, Advanced drug delivery reviews.

[27]  F. Szoka,et al.  Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). , 1999, BioTechniques.

[28]  P. Cullis,et al.  Poly(ethylene glycol)--lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. , 1996, Biochemistry.

[29]  M. Stuart,et al.  Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. , 1995, Biochimica et biophysica acta.

[30]  A. Mahajan,et al.  Nucleation and growth kinetics of biochemicals measured at high supersaturations , 1994 .

[31]  V. V. Kumar,et al.  Complementary molecular shapes and additivity of the packing parameter of lipids. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Deamer,et al.  A novel method for encapsulation of macromolecules in liposomes. , 1985, Biochimica et biophysica acta.

[33]  N. Garti,et al.  Solubilities of cholesterol, sitosterol, and cholesteryl acetate in polar organic solvents , 1984 .

[34]  F. Szoka,et al.  Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Wisse,et al.  The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer , 2008, Gene Therapy.

[36]  R. Prud’homme,et al.  Ostwald ripening of beta-carotene nanoparticles. , 2007, Physical review letters.

[37]  Guozhong Cao,et al.  Nanostructures & nanomaterials : synthesis, properties & applications , 2004 .

[38]  L. Auvray,et al.  Spontaneous vesiculation. , 2001, Advances in colloid and interface science.