Nonergodic Delocalized States for Efficient Population Transfer within a Narrow Band of the Energy Landscape

We analyze the role of coherent tunneling that gives rise to bands of delocalized quantum states providing a coherent pathway for population transfer (PT) between computational states with similar energies. Given an energy function ${\cal E}(z)$ of a binary optimization problem and a bit-string $z_i$ with atypically low energy, our goal is to find other bit-strings with energies within a narrow window around ${\cal E}(z_i)$. We study PT due to quantum evolution under a transverse field $B_\perp$ of an n-qubit system that encodes ${\cal E}(z)$. We focus on a simple yet nontrivial model: $M$ randomly chosen "marked" bit-strings ($2^n \gg M$) are assigned energies in the interval ${\cal E}(z)\in[-n -W/2, n + W/2]$ with $W << B_\perp$, while the rest of the states are assigned energy $0$. The PT starts at a marked state $z_i$ and ends up in a superposition of $\sim \Omega$ marked states inside the PT window. The scaling of a typical runtime for PT with $n$ and $\Omega$ is the same as in the multi-target Grover's algorithm, except for a factor that is equal to $\exp(n \,B_{\perp}^{-2}/2)$ for $n \gg B_{\perp}^{2} \gg 1$. Unlike the Hamiltonians used in analog quantum search algorithms, the model we consider is non-integrable, and the transverse field delocalizes the marked states. PT protocol is not sensitive to the value of B and may be initialized at a marked state. We develop microscopic theory of PT. Under certain conditions, the band of the system eigenstates splits into mini-bands of non-ergodic delocalized states, whose width obeys a heavy-tailed distribution directly related to that of PT runtimes. We find analytical form of this distribution by solving nonlinear cavity equations for the random matrix ensemble. We argue that our approach can be applied to study the PT protocol in other transverse field spin glass models, with a potential quantum advantage over classical algorithms.

[1]  C. Porter,et al.  "Repulsion of Energy Levels" in Complex Atomic Spectra , 1960 .

[2]  A. Scardicchio,et al.  Ergodic and localized regions in quantum spin glasses on the Bethe lattice , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[4]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[5]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[6]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[7]  V. E. Kravtsov,et al.  A random matrix model with localization and ergodic transitions , 2015, 1508.01714.

[8]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[9]  P. Anderson,et al.  A selfconsistent theory of localization , 1973 .

[10]  S. Knysh,et al.  Zero-temperature quantum annealing bottlenecks in the spin-glass phase , 2016, Nature Communications.

[11]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[12]  K. Chung,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[13]  Anupam Garg Application of the discrete Wentzel–Kramers–Brillouin method to spin tunneling , 1998 .

[14]  A. Scardicchio,et al.  Clustering of Nonergodic Eigenstates in Quantum Spin Glasses. , 2016, Physical review letters.

[15]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[16]  T. Tao Topics in Random Matrix Theory , 2012 .

[17]  A. Scardicchio,et al.  Anderson localization on the Bethe lattice: nonergodicity of extended States. , 2014, Physical review letters.

[18]  A. Scardicchio,et al.  Many-body mobility edge in a mean-field quantum spin glass. , 2014, Physical review letters.

[19]  F L Metz,et al.  Localization transition in symmetric random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Pearl Resnick On the analytic structure of Green ’ s function for the Fano-Anderson model , 2008 .

[21]  Antonello Scardicchio,et al.  Many body localization transition in quantum spin glasses on the Bethe lattice , 2017 .

[22]  Koujin Takeda,et al.  Cavity approach to the spectral density of sparse symmetric random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jerzy Jurkiewicz,et al.  Free random Lévy and Wigner-Lévy matrices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  T. R. Kirkpatrick,et al.  p-spin-interaction spin-glass models: Connections with the structural glass problem. , 1987, Physical review. B, Condensed matter.

[25]  C. Laumann,et al.  Quantum algorithm for energy matching in hard optimization problems , 2018, Physical Review B.

[26]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[27]  Yang Sun,et al.  Phase matching condition for quantum search with a generalized initial state , 2002 .

[28]  H. Neven,et al.  Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. , 2015, Physical review letters.

[29]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[30]  Dogan A. Timucin,et al.  Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning , 2002, quant-ph/0202155.

[31]  S. Prabakaran,et al.  THE STATISTICAL MECHANICS OF FINANCIAL MARKETS , 2007 .

[32]  Cecile Monthus,et al.  Localization transition in random Lévy matrices: multifractality of eigenvectors in the localized phase and at criticality , 2016, 1606.03241.

[33]  L. B. Ioffe,et al.  Multifractal states in self-consistent theory of localization: analytical solution , 2016, 1610.00758.

[34]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[35]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .

[36]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[37]  A. Mirlin,et al.  Anderson localization and ergodicity on random regular graphs , 2016, 1604.05353.

[38]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[39]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  A. Mirlin,et al.  Fractality of wave functions on a Cayley tree: Difference between tree and locally treelike graph without boundary , 2016, 1608.00331.

[41]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[42]  R. Varga Geršgorin And His Circles , 2004 .

[43]  Pierpaolo Vivo,et al.  From non-ergodic eigenvectors to local resolvent statistics and back: A random matrix perspective , 2016, 1607.05942.

[44]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[45]  A. Mirlin,et al.  Multifractality of Wave Functions on a Cayley Tree: From Root to Leaves , 2017, 1708.04978.

[46]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[47]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[48]  D. Huse,et al.  Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.

[49]  L. Ioffe,et al.  Non-ergodic extended phase of the Quantum Random Energy model , 2018, Annals of Physics.

[50]  A. Scardicchio,et al.  Support set of random wave-functions on the Bethe lattice , 2013, 1401.0019.

[51]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[52]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[53]  K. B. Whaley,et al.  Effects of a random noisy oracle on search algorithm complexity , 2003, quant-ph/0304138.

[54]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[55]  Vadim N. Smelyanskiy,et al.  On the relevance of avoided crossings away from quantum critical point to the complexity of quantum adiabatic algorithm , 2010, ArXiv.

[56]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[57]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[58]  Goldschmidt Solvable model of the quantum spin glass in a transverse field. , 1990, Physical review. B, Condensed matter.

[59]  G. Biroli,et al.  Level Statistics and Localization Transitions of Lévy Matrices. , 2015, Physical review letters.

[60]  B L Altshuler,et al.  Nonergodic Phases in Strongly Disordered Random Regular Graphs. , 2016, Physical review letters.

[61]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[62]  A. Scardicchio,et al.  The many-body localized phase of the quantum random energy model , 2015, 1509.08926.

[63]  P. A. Braun Discrete semiclassical methods in the theory of Rydberg atoms in external fields , 1993 .

[64]  H. Neven,et al.  Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations , 2016, 1603.01293.

[65]  Andrew M. Childs,et al.  Quantum search by measurement , 2002, quant-ph/0204013.