Missing boundary data reconstruction via an approximate optimal control

An approximate optimal control formulation of the Cauchy problem for elliptic equations is considered. A cost functional adding a fading through the iterations regularizing term borrowed from the domain decomposition communauty is proposed. Convergence of the descretized finite elements solution to the continuous one is proved. Numerical experiments involving smooth, non-smooth geometries as well as anisotropy highlight the capability of the present missing boundary data recovering process.