Alternative representations and abstractions for moving sensors databases

Moving sensors refers to an emerging class of data intensive applications that inpacts disciplines such as communication, health-care, scientific applications, etc. These applications consist of a fixed number of sensors that move and produce streams of data as a function of time. They may require the system to match these streams against stored streams to retrieve relevant data (patterns). With communication, for example, a speaking impaired individual might utilize a haptic glove that translates hand signs into written (spoken) words. The glove consists of sensors for different finger joints. These sensors report their location and values as a function of time, producing streams of data. These streams are matched against a repository of spatio-temporal streams to retrieve the corresponding English character or word.The contributions of this study are two fold. First, it introduces a framework to store and retrieve "moving sensors" data. The framework advocates physical data independence and software-reuse. Second, we investigate alternative representations for storage and retrieve of data in support of query processing. We quantify the tradeoff associated with these alternatives using empirical data RoboCup soccer matches.

[1]  Cyrus Shahabi,et al.  Distributed Multimedia Systems , 1999 .

[2]  Michael H. Böhlen,et al.  Access Structures for Moving Points , 2003 .

[3]  A. Prasad Sistla,et al.  Querying the Uncertain Position of Moving Objects , 1997, Temporal Databases, Dagstuhl.

[4]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[5]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[6]  Thomas Rist,et al.  Generating Multimedia Presentations for RoboCup Soccer Games , 1997, RoboCup.

[7]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[8]  Lingling Zhang,et al.  Alternative techniques for the efficient acquisition of haptic data , 2001, SIGMETRICS '01.

[9]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[10]  Christophe Claramunt,et al.  Managing Time in GIS: An Event-Oriented Approach , 1995, Temporal Databases.

[11]  Alex Pentland,et al.  Modeling, tracking and interactive animation of faces and heads//using input from video , 1996, Proceedings Computer Animation '96.

[12]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[13]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[14]  A. Prasad Sistla,et al.  DOMINO: databases fOr MovINg Objects tracking , 1999, SIGMOD '99.

[15]  Dimitris N. Metaxas,et al.  Adapting hidden Markov models for ASL recognition by using three-dimensional computer vision methods , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[16]  Cyrus Shahabi,et al.  Analysis of clustering techniques to detect hand signs , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[17]  Milind Tambe,et al.  Towards Automated Team Analysis : A Machine Learning Approach , 1999 .

[18]  Nectaria Tryfona,et al.  Logical data modeling of spatiotemporal applications: definitions and a model , 1998, Proceedings. IDEAS'98. International Database Engineering and Applications Symposium (Cat. No.98EX156).

[19]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[20]  Martin L. A. Sternberg,et al.  American Sign Language , 1998 .

[21]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[22]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[23]  Thad Starner,et al.  Visual Recognition of American Sign Language Using Hidden Markov Models. , 1995 .

[24]  Cyrus Shahabi,et al.  Immersidata Management: Challenges in Management of Data Generated within an Immersive Environment , 1999, Multimedia Information Systems.

[25]  Yannis Manolopoulos,et al.  Overlapping B+trees for temporal data , 1990, Proceedings of the 5th Jerusalem Conference on Information Technology, 1990. 'Next Decade in Information Technology'.

[26]  Ouri Wolfson,et al.  Cost and imprecision in modeling the position of moving objects , 1998, Proceedings 14th International Conference on Data Engineering.

[27]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[28]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[29]  Timos K. Sellis,et al.  Specifications for efficient indexing in spatiotemporal databases , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[30]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[31]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[32]  Yannis Manolopoulos,et al.  Overlapping linear quadtrees: a spatio-temporal access method , 1998, GIS '98.

[33]  Christian S. Jensen,et al.  R-Tree Based Indexing of Now-Relative Bitemporal Data , 1998, VLDB.

[34]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[35]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[36]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[37]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[38]  Hiroaki Kitano,et al.  RoboCup: The Robot World Cup Initiative , 1997, AGENTS '97.

[39]  Cyrus Shahabi,et al.  Analysis of haptic data for sign language recognition , 2001, HCI.

[40]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.