Order Theory and Nonparametric Maximum Likelihood for Interval Censored Data

Interval censored data arises when individuals can be subjected to periodic inspection at possibly random moments, and their status (e.g. failed or functioning) is ascertained at each inspection. We exploit the order theoretic properties of interval orders to develop a new language describing interval censored data. We show that inference can be based on the set Mof maximal antichains of the data, rather than on the real line, extending the reasoning of Turnbull (1976). We show how M can be used to obtain the nonparametric maximum likelihood estimators suggested by Turnbull (1976). We discuss some properties of self-consistent estimators of the cumulative distribution function in light of the structure of M. We show the identity between self-consistency augmented by Kuhn-Tucker conditions and Fenchel duality, which characterize the NPMLE on M. We port to M recently developed isotonic regression techniques to estimate

[1]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[2]  C. Geyer,et al.  Maximum likelihood for interval censored data: Consistency and computation , 1994 .

[3]  R. Wolfe,et al.  A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.

[4]  P. Mykland,et al.  Algorithms for computing self-consistent and maximum likelihood estimators with doubly censored data , 1996 .

[5]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[6]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[7]  Geurt Jongbloed,et al.  The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .

[8]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[9]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[10]  R. Gentleman,et al.  Weak Order Partitioning of Interval Orders with Applications to Interval Censored Data , 1998 .

[11]  Peter Schlattmann,et al.  Interval censored data: A note on the nonparametric maximum likelihood estimator of the distribution function , 1996 .

[12]  B. Turnbull Nonparametric Estimation of a Survivorship Function with Doubly Censored Data , 1974 .

[13]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[14]  R. Peto,et al.  Experimental Survival Curves for Interval‐Censored Data , 1973 .

[15]  Piet Groeneboom,et al.  Lectures on inverse problems , 1996 .

[16]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[17]  Jon A. Wellner,et al.  A Hybrid Algorithm for Computation of the Nonparametric Maximum Likelihood Estimator from Censored Data , 1997 .

[18]  R. Redner Note on the Consistency of the Maximum Likelihood Estimate for Nonidentifiable Distributions , 1981 .

[19]  B. Efron The two sample problem with censored data , 1967 .