Error Estimates for Backward Fractional Feynman–Kac Equation with Non-Smooth Initial Data

In this paper, we are concerned with the numerical solution for the backward fractional Feynman–Kac equation with non-smooth initial data. Here we first provide the regularity estimate of the solution. And then we use the backward Euler and second-order backward difference convolution quadratures to approximate the Riemann–Liouville fractional substantial derivative and get the first- and second-order convergence in time. The finite element method is used to discretize the Laplace operator with the optimal convergence rates. Compared with the previous works for the backward fractional Feynman–Kac equation, the main advantage of the current discretization is that we don’t need the assumption on the regularity of the solution in temporal and spatial directions. Moreover, the error estimates of the time semi-discrete schemes and the fully discrete schemes are also provided. Finally, we perform the numerical experiments to verify the effectiveness of the presented algorithms.

[1]  Fanhai Zeng,et al.  Spectral approximations to the fractional integral and derivative , 2012 .

[2]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[3]  W. H. Deng,et al.  Numerical schemes of the time tempered fractional Feynman-Kac equation , 2016, Comput. Math. Appl..

[4]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..

[5]  Eli Barkai,et al.  Fractional Feynman-Kac equation for weak ergodicity breaking. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Weihua Deng,et al.  Numerical Algorithms of the Two-dimensional Feynman–Kac Equation for Reaction and Diffusion Processes , 2018, Journal of Scientific Computing.

[7]  Minghua Chen,et al.  Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations , 2014, J. Sci. Comput..

[8]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[9]  W. Deng,et al.  Lévy Walk with Multiple Internal States , 2017, Journal of Statistical Physics.

[10]  Eli Barkai,et al.  On Distributions of Functionals of Anomalous Diffusion Paths , 2010, 1004.0943.

[11]  W. Deng,et al.  Fractional compound Poisson processes with multiple internal states , 2017, 1703.03237.

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  W. Deng,et al.  Feynman–Kac equations for reaction and diffusion processes , 2017, 1706.01512.

[14]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[15]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[16]  Aijie Cheng,et al.  A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion , 2015 .

[17]  A. Baule,et al.  Feynman–Kac equation for anomalous processes with space- and time-dependent forces , 2017, 1701.01641.

[18]  Francisco M. Bersetche,et al.  Finite element approximations for fractional evolution problems , 2017, Fractional Calculus and Applied Analysis.

[19]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[20]  Noam Agmon,et al.  Residence times in diffusion processes , 1984 .

[21]  Eli Barkai,et al.  Fractional Feynman-Kac equation for non-brownian functionals. , 2009, Physical review letters.

[22]  M. Kac On distributions of certain Wiener functionals , 1949 .

[23]  Weihua Deng,et al.  Time Discretization of a Tempered Fractional Feynman-Kac Equation with Measure Data , 2018, SIAM J. Numer. Anal..

[24]  Weihua Deng,et al.  Discretized fractional substantial calculus , 2013, 1310.3086.

[25]  Yubin Yan,et al.  An Analysis of the Modified L1 Scheme for Time-Fractional Partial Differential Equations with Nonsmooth Data , 2018, SIAM J. Numer. Anal..

[26]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[27]  Minghua Chen,et al.  High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation , 2016, J. Sci. Comput..

[28]  W. Deng,et al.  Feynman-Kac equation revisited , 2018, Physical Review E.

[29]  Weihua Deng,et al.  High order finite difference WENO schemes for fractional differential equations , 2013, Appl. Math. Lett..

[30]  Bangti Jin,et al.  An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.

[31]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[32]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional differential equations , 2019, Discrete & Continuous Dynamical Systems - B.