Two-port circuits based hybrid model of synchronous machine

The paper introduces the so-called hybrid state model of a synchronous machine based on the superposition principle of the two-port representation of d-axis (two-port circuits) and the single-port structure of q-axis equivalent circuits. The detailed formulation of the hybrid state model is developed in terms of the equivalent-circuit parameters of the machine. Analytical expressions of terminal voltages and the field current following the decrement tests are derived. A practical application of the model for the load rejection test analysis is investigated. Comparisons are made between simulation results and actual data obtained from a laboratory machine to assess the efficacy of the proposed synchronous generator framework analysis

[1]  S. Doi,et al.  Development for Measurement of Operating Parameters of Synchronous Generator and Control Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[2]  Mario Savino,et al.  Experimental determination of synchronous machine parameters , 1981 .

[3]  O.P. Malik,et al.  Identification of physical parameters of a synchronous Generator from online measurements , 2004, IEEE Transactions on Energy Conversion.

[4]  Jeffrey H. Lang,et al.  A state observer for the permanent-magnet synchronous motor , 1989 .

[5]  P. Vas Vector control of AC machines , 1990 .

[6]  S. Abe,et al.  Measurements of Synchronous Machine Parameters Under Operating Condition , 1982, IEEE Transactions on Power Apparatus and Systems.

[7]  Jeffrey H. Lang,et al.  A STATE OBSERVER FOR THE PERMANENT-MAGNET , 1989 .

[8]  G. Shackshaft,et al.  New approach to the determination of synchronous-machine parameters from tests , 1974 .

[9]  F.P. de Mello,et al.  Derivation of synchronous machine parameters from tests , 1977, IEEE Transactions on Power Apparatus and Systems.

[10]  Philippe Viarouge,et al.  Three-transfer-function approach for building phenomenological models of synchronous machines , 1994 .

[11]  E. da Costa Bortoni,et al.  Identiffication of Synchronous Machine Parameters Using Load Rejection Test Data , 2002 .

[12]  S. Morimoto,et al.  Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity , 1990 .

[13]  G. G. Johnstone,et al.  Relations between two-port parameters , 1991 .

[14]  Innocent Kamwa,et al.  Short-circuit test based maximum likelihood estimation of stability model of large generators , 1999 .

[15]  J. A. Jardini,et al.  Identiffication of Synchronous Machine Parameters Using Load Rejection Test Data , 2002, IEEE Power Engineering Review.

[16]  J. Holtz,et al.  Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[17]  Hamid A. Toliyat,et al.  DSP-Based Electromechanical Motion Control , 2003 .

[18]  L. Hannett,et al.  Validation of Synchronous Machine Models and Derivation of Model Parameters from Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[19]  K. Hirayama Practical detailed model for generators , 1995 .