Modified basis functions for MPHT-splines

Abstract By allowing split-in-half in mesh refinement, MPHT-splines (modified polynomial splines over hierarchical T-meshes) were recently introduced to increase the flexibility of PHT-splines. However, some basis functions of MPHT-splines may severely decay as the basis functions of PHT-splines during the process of certain refinement of hierarchical T-meshes. This decay phenomenon may cause the isogeometric analysis matrices assembled by these basis functions to be ill-conditioned. To overcome this defect, we present a method to modify the basis functions of MPHT-splines when the supports of the original truncated basis functions are rectangular domains. Hence, the truncation operations are less used, which alleviates the decay phenomenon of MPHT-splines. In addition, the modified basis functions preserve the good properties of the original MPHT-spline basis functions, e.g., the partition of unity, local support and linear independence. Numerical examples show that the condition numbers of isogeometric analysis matrices significantly decrease when new basis functions are applied.

[1]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[2]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[3]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[4]  Jiansong Deng,et al.  A new basis for PHT-splines , 2015, Graph. Model..

[5]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[6]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[7]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[8]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[9]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[10]  Jun Wang,et al.  Adaptive surface reconstruction based on implicit PHT-splines , 2010, SPM '10.

[11]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[12]  Xin Li,et al.  AS++ T-splines: Linear independence and approximation , 2018 .

[13]  Hendrik Speleers,et al.  Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..

[14]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[15]  Benjamin Marussig,et al.  Improved conditioning of isogeometric analysis matrices for trimmed geometries , 2018, Computer Methods in Applied Mechanics and Engineering.

[16]  Li Tian,et al.  Adaptive finite element methods for elliptic equations over hierarchical T-meshes , 2011, J. Comput. Appl. Math..

[17]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[18]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[19]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[20]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[21]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[22]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  Jiansong Deng,et al.  Modified PHT-splines , 2019, Comput. Aided Geom. Des..

[25]  Bert Jüttler,et al.  Adaptive CAD model (re-)construction with THB-splines , 2014, Graph. Model..

[26]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[27]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[28]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[29]  Jiansong Deng,et al.  Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[30]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[31]  Falai Chen,et al.  Modified Bases of PHT-Splines , 2017 .

[32]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[33]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[34]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[35]  Bert Jüttler,et al.  Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .

[36]  N. Nguyen-Thanh,et al.  An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .