A Global Bifurcation Analysis of the Subcritical Hopf Normal Form Subject to Pyragas Time-Delayed Feedback Control

Unstable periodic orbits occur naturally in many nonlinear dynamical systems. They can generally not be observed directly, but a number of control schemes have been suggested to stabilize them. One such scheme is that by Pyragas [Phys. Lett. A, 170 (1992), pp. 421--428], which uses time-delayed feedback to target a specific unstable periodic orbit of a given period and stabilize it. This paper considers the global effect of applying Pyragas control to a nonlinear dynamical system. Specifically, we consider the standard example of the subcritical Hopf normal form subject to Pyragas control, which is a delay differential equation (DDE) that models how a generic unstable periodic orbit is stabilized. Our aim is to study how this DDE model depends on its different parameters, including the phase of the feedback and the imaginary part of the cubic coefficient, over their entire ranges. We show that the delayed feedback control induces infinitely many curves of Hopf bifurcations, from which emanate infinitely m...

[1]  C. Postlethwaite,et al.  Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Kestutis Pyragas,et al.  Delayed feedback control of chaos , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  V Flunkert,et al.  Refuting the odd-number limitation of time-delayed feedback control. , 2006, Physical review letters.

[4]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[5]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[6]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[7]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[8]  Anup Purewal,et al.  Global effects of Pyragas time-delayed feedback control , 2015 .

[9]  B Krauskopf,et al.  Effect of delay mismatch in Pyragas feedback control. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  K. Pyragas,et al.  Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay , 2011 .

[11]  Kestutis Pyragas,et al.  Experimental control of chaos by delayed self-controlling feedback , 1993 .

[12]  Wolfram Just,et al.  Global view on a nonlinear oscillator subject to time-delayed feedback control , 2009 .

[13]  Claire M. Postlethwaite,et al.  Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation , 2010, 1006.3479.

[14]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[15]  Tamás Kalmár-Nagy,et al.  Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations , 2001 .

[16]  Gábor Stépán,et al.  Delay, Parametric Excitation, and the Nonlinear Dynamics of Cutting Processes , 2005, Int. J. Bifurc. Chaos.

[17]  S Yanchuk,et al.  Delay and periodicity. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  E Schöll,et al.  All-optical noninvasive control of unstable steady states in a semiconductor laser. , 2006, Physical review letters.

[19]  Sue Ann Campbell,et al.  Stability and Bifurcation Analysis of a Nonlinear DDE Model for Drilling , 2004, J. Nonlinear Sci..

[20]  I Z Kiss,et al.  Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Gauthier,et al.  Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[23]  Alexander L. Fradkov,et al.  Control of chaos: methods and applications in mechanics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  K. Showalter,et al.  Controlling chemical chaos , 1991 .

[25]  Sue Ann Campbell,et al.  Analysis of the chatter instability in a nonlinear model for drilling , 2006 .

[26]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[27]  Kestutis Pyragas Control of chaos via extended delay feedback , 1995 .

[28]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[29]  Jianhong Wu,et al.  Introduction to Functional Differential Equations , 2013 .

[30]  Bernd Krauskopf,et al.  Control-Based Continuation of Periodic orbits with a Time-Delayed Difference Scheme , 2007, Int. J. Bifurc. Chaos.

[31]  Gábor Stépán,et al.  Criticality of Hopf bifurcation in state-dependent delay model of turning processes , 2008 .

[32]  Piotr Fronczak,et al.  Limits of time-delayed feedback control , 1999 .

[33]  H. Nakajima On analytical properties of delayed feedback control of chaos , 1997 .

[34]  Sue Ann Campbell,et al.  Resonant Hopf–Hopf Interactions in Delay Differential Equations , 1998 .

[35]  Kestutis Pyragas,et al.  Time-delayed feedback control design beyond the odd-number limitation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[37]  Gábor Stépán,et al.  Lobes and Lenses in the Stability Chart of Interrupted Turning , 2006 .

[38]  B. Krauskopf,et al.  Control based bifurcation analysis for experiments , 2008 .

[39]  Philipp Hövel,et al.  Time-delayed feedback in neurosystems , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Claire M Postlethwaite,et al.  Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Tamás Kalmár-Nagy,et al.  Delay differential equations : recent advances and new directions , 2009 .

[42]  I. Schneider,et al.  Eliminating restrictions of time-delayed feedback control using equivariance , 2015 .

[43]  Glorieux,et al.  Controlling unstable periodic orbits by a delayed continuous feedback. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Socolar,et al.  Controlling spatiotemporal dynamics with time-delay feedback. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  C. Postlethwaite,et al.  Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg-Landau equation. , 2006, nlin/0701007.

[46]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[47]  William Leithead,et al.  Appropriate realization of gain-scheduled controllers with application to wind turbine regulation , 1996 .

[48]  V Flunkert,et al.  Beyond the odd number limitation: a bifurcation analysis of time-delayed feedback control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Wolfram Just,et al.  MECHANISM OF TIME-DELAYED FEEDBACK CONTROL , 1996, chao-dyn/9611012.

[50]  R. Blittersdorf,et al.  Continuous control of chemical chaos by time delayed feedback , 1993 .

[51]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[52]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[53]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[54]  V Flunkert,et al.  Towards easier realization of time-delayed feedback control of odd-number orbits. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[56]  István Z Kiss,et al.  Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control. , 2006, Chaos.

[57]  Lu,et al.  Control of patterns in spatiotemporal chaos in optics. , 1996, Physical review letters.

[58]  F Henneberger,et al.  Odd-number theorem: optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.