A class of attraction/repulsion functions for stable swarm aggregations

In this article, for an M-member "individual-based" continuous time swarm model in an n-dimensional space, we extend our previous results (2002) by specifying a general class of attraction/repulsion functions that can be used to achieve swarm aggregation. These functions are odd functions that have terms for attraction and repulsion acting in opposite directions in compliance with real biological swarms. We present a stability analysis for several cases of the functions considered to characterize the swarm cohesiveness, size, and ultimate motions while in a cohesive group.

[1]  Kevin M. Passino,et al.  Stability of a one-dimensional discrete-time asynchronous swarm , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[2]  Marios M. Polycarpou,et al.  Stability analysis of one-dimensional asynchronous mobile swarms , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[3]  M. Egerstedt,et al.  Formation constrained multi-agent control , 2001, IEEE Trans. Robotics Autom..

[4]  Kevin M. Passino,et al.  Stability analysis of swarms , 2003, IEEE Trans. Autom. Control..

[5]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[6]  Richard M. Murray,et al.  Flocking with obstacle avoidance: cooperation with limited communication in mobile networks , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  George J. Pappas,et al.  Feasible formations of multi-agent systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[9]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[10]  K. Passino,et al.  Stability analysis of swarms in a noisy environment , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  Mario Innocenti,et al.  Autonomous formation flight , 2000 .

[13]  K. Warburton,et al.  Tendency-distance models of social cohesion in animal groups. , 1991, Journal of Theoretical Biology.

[14]  Richard M. Murray,et al.  DISTRIBUTED COOPERATIVE CONTROL OF MULTIPLE VEHICLE FORMATIONS USING STRUCTURAL POTENTIAL FUNCTIONS , 2002 .

[15]  Kevin M. Passino,et al.  Stability analysis of swarms in an environment with an attractant/repellent profile , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[16]  Kai Jin,et al.  Stability of synchronized distributed control of discrete swarm structures , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[18]  Yang Liu,et al.  Stability analysis of one-dimensional asynchronous swarms , 2003, IEEE Trans. Autom. Control..

[19]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[20]  Ping Liang,et al.  Pattern reconfiguration in swarms-convergence of a distributed asynchronous and bounded iterative algorithm , 1996, IEEE Trans. Robotics Autom..

[21]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[22]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[23]  K.M. Passino,et al.  Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[25]  Veysel Gazi,et al.  Swarm aggregations using artificial potentials and sliding mode control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[26]  Tianguang Chu,et al.  Self-organized motion in anisotropic swarms , 2003 .

[27]  K.M. Passino,et al.  Stability analysis of social foraging swarms , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).