Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis

The classification accuracy of remote sensing data can be increased by integrating ancillary data provided by multisource acquisition of the same scene. We propose to merge the spectral and spatial content of hyperspectral images (HSIs) with elevation information from light detection and ranging (LiDAR) measurements. In this paper, we propose to fuse the data sets using orthogonal total variation component analysis (OTVCA). Extinction profiles are used to automatically extract spatial and elevation information from HSI and rasterized LiDAR features. The extracted spatial and elevation information is then fused with spectral information using the OTVCA-based feature fusion method to produce the final classification map. The extracted features have high dimension, and therefore OTVCA estimates the fused features in a lower dimensional space. OTVCA also promotes piece-wise smoothness while maintaining the spatial structures. Both attributes are important to provide homogeneous regions in the final classification maps. We benchmark the proposed approach (OTVCA-fusion) with an urban data set captured over an urban area in Houston/USA and a rural region acquired in Trento/Italy. In the experiments, OTVCA-fusion is evaluated using random forest and support vector machine classifiers. Our experiments demonstrate the ability of OTVCA-fusion to produce accurate classification maps while using fewer features compared with other approaches investigated in this paper.

[1]  Johannes R. Sveinsson,et al.  Total variation based hyperspectral feature extraction , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[2]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[3]  Antonio J. Plaza,et al.  Hyperspectral coded aperture (HYCA): A new technique for hyperspectral compressive sensing , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[5]  Jon Atli Benediktsson,et al.  Extinction Profiles for the Classification of Remote Sensing Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jon Atli Benediktsson,et al.  Hyperspectral Data Classification Using Extended Extinction Profiles , 2016, IEEE Geoscience and Remote Sensing Letters.

[7]  Onkar Dikshit,et al.  SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES USING VARIATIONAL AUTOENCODER AND CONVOLUTION NEURAL NETWORK , 2018, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[8]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[9]  Pedram Ghamisi,et al.  Spectral and Spatial Classification of Hyperspectral Data , 2015 .

[10]  Jon Atli Benediktsson,et al.  Land-cover classification using both hyperspectral and LiDAR data , 2015 .

[11]  Johannes R. Sveinsson,et al.  Hyperspectral Feature Extraction Using Total Variation Component Analysis , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Qian Du,et al.  Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Johannes R. Sveinsson,et al.  SAR image denoising using total variation based regularization with sure-based optimization of the regularization parameter , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Ramanathan Sugumaran,et al.  Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object-Oriented Approach , 2008, Sensors.

[16]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[17]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[18]  Farid Melgani,et al.  Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Liangpei Zhang,et al.  Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[23]  Johannes R. Sveinsson,et al.  Smooth spectral unmixing using total variation regularization and a first order roughness penalty , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[24]  T. Esch,et al.  Urban structure type characterization using hyperspectral remote sensing and height information , 2012 .

[25]  Wilfried Philips,et al.  Feature fusion of hyperspectral and LiDAR data for classification of remote sensing data from urban area , 2014 .

[26]  Benjamin Koetz,et al.  Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data , 2008 .

[27]  R. Sugumaran,et al.  Object-Oriented Classification of LIDAR-Fused Hyperspectral Imagery for Tree Species Identification in an Urban Environment , 2007, 2007 Urban Remote Sensing Joint Event.

[28]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[29]  Jon Atli Benediktsson,et al.  A Novel Feature Selection Approach Based on FODPSO and SVM , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Peter Bunting,et al.  Retrieving forest biomass through integration of CASI and LiDAR data , 2008 .

[31]  Jocelyn Chanussot,et al.  Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing , 2014, Proceedings of the IEEE.

[32]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[33]  Jon Atli Benediktsson,et al.  Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization , 2015, IEEE Geoscience and Remote Sensing Letters.

[34]  Johannes R. Sveinsson,et al.  A New Pansharpening Algorithm Based on Total Variation , 2014, IEEE Geoscience and Remote Sensing Letters.

[35]  Aleksandra Pizurica,et al.  Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features , 2015, IEEE Geoscience and Remote Sensing Letters.

[36]  K. Jones,et al.  Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery , 2009, Environmental monitoring and assessment.