Planar anti-Ramsey numbers of matchings

Given a positive integer $n$ and a planar graph $H$, let $\mathcal{T}_n(H)$ be the family of all plane triangulations $T$ on $n$ vertices such that $T$ contains a subgraph isomorphic to $H$. The planar anti-Ramsey number of $H$, denoted $ar_{_\mathcal{P}}(n, H)$, is the maximum number of colors in an edge-coloring of a plane triangulation $T\in \mathcal{T}_n(H)$ such that $T$ contains no rainbow copy of $H$. In this paper we study planar anti-Ramsey numbers of matchings. For all $t\ge1$, let $M_t$ denote a matching of size $t$. We prove that for all $t\ge6$ and $n\ge 3t-6$, $2n+3t-15\le ar_{_{\mathcal{P}}}(n, {M}_t)\le 2n+4t-14$, which significantly improves the existing lower and upper bounds for $ar_{_\mathcal{P}}(n, M_t)$. It seems that for each $t\ge6$, the lower bound we obtained is the exact value of $ar_{_{\mathcal{P}}}(n, {M}_t)$ for sufficiently large $n$. This is indeed the case for $M_6$. We prove that $ar_{_\mathcal{P}}(n, M_6)=2n+3$ for all $n\ge30$.

[1]  Ingo Schiermeyer Rainbow numbers for matchings and complete graphs , 2004, Discret. Math..

[2]  Khodabakhsh Hessami Pilehrood,et al.  On a conjecture of Erdos , 2008 .

[3]  Stanislav Jendrol',et al.  Rainbow Numbers for Cycles in Plane Triangulations , 2015, J. Graph Theory.

[4]  Xueliang Li,et al.  Anti-Ramsey Numbers for Graphs with Independent Cycles , 2009, Electron. J. Comb..

[5]  Yongtang Shi,et al.  Planar Tur\'an numbers for Theta graphs and paths of small order , 2017 .

[6]  Douglas B. West,et al.  Maximum Face-Constrained Coloring of Plane Graphs , 2002, Electron. Notes Discret. Math..

[7]  Tao Jiang Anti-Ramsey Numbers of Subdivided Graphs , 2002, J. Comb. Theory, Ser. B.

[8]  Tao Jiang,et al.  Anti-Ramsey numbers of doubly edge-critical graphs , 2009 .

[9]  Yongtang Shi,et al.  Planar anti-Ramsey numbers of paths and cycles , 2019, Discret. Math..

[10]  Chris Dowden,et al.  Extremal C4‐Free/C5‐Free Planar Graphs , 2015, J. Graph Theory.

[11]  Yongtang Shi,et al.  Improved bounds for rainbow numbers of matchings in plane triangulations , 2019, Discret. Math..

[12]  Daniel Král,et al.  Non-rainbow colorings of 3-, 4- and 5-connected plane graphs , 2010 .

[13]  Maria Axenovich,et al.  Bipartite anti‐Ramsey numbers of cycles , 2004, J. Graph Theory.

[14]  Stanislav Jendrol',et al.  Rainbow numbers for matchings in plane triangulations , 2014, Discret. Math..

[15]  Noga Alon,et al.  On a conjecture of erdöus, simonovits, and sós concerning anti-Ramsey theorems , 1983, J. Graph Theory.

[16]  Roman Soták,et al.  Rainbow faces in edge-colored plane graphs , 2009 .

[17]  Juan José Montellano-Ballesteros,et al.  An Anti-Ramsey Theorem , 2002, Comb..