An Efficient Clustering Algorithm for k-Anonymisation
暂无分享,去创建一个
[1] David J. DeWitt,et al. Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[2] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[3] Latanya Sweeney,et al. k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[4] JOHANNES GEHRKE,et al. RainForest—A Framework for Fast Decision Tree Construction of Large Datasets , 1998, Data Mining and Knowledge Discovery.
[5] Philip S. Yu,et al. A Condensation Approach to Privacy Preserving Data Mining , 2004, EDBT.
[6] Jian Pei,et al. Utility-based anonymization using local recoding , 2006, KDD '06.
[7] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[8] David J. DeWitt,et al. Workload-aware anonymization , 2006, KDD '06.
[9] David J. DeWitt,et al. Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.
[10] Jörg Sander,et al. Data Bubbles for Non-Vector Data: Speeding-up Hierarchical Clustering in Arbitrary Metric Spaces , 2003, VLDB.
[11] Yufei Tao,et al. Anatomy: simple and effective privacy preservation , 2006, VLDB.
[12] Grigorios Loukides,et al. Speeding Up Clustering-Based k -Anonymisation Algorithms with Pre-partitioning , 2007, BNCOD.
[13] Wenliang Du,et al. Comparisons of K-Anonymization and Randomization Schemes under Linking Attacks , 2006, Sixth International Conference on Data Mining (ICDM'06).
[14] Roberto J. Bayardo,et al. Data privacy through optimal k-anonymization , 2005, 21st International Conference on Data Engineering (ICDE'05).
[15] Grigorios Loukides,et al. Capturing data usefulness and privacy protection in K-anonymisation , 2007, SAC '07.
[16] Elisa Bertino,et al. Efficient k -Anonymization Using Clustering Techniques , 2007, DASFAA.
[17] ASHWIN MACHANAVAJJHALA,et al. L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[18] Philip S. Yu,et al. Top-down specialization for information and privacy preservation , 2005, 21st International Conference on Data Engineering (ICDE'05).
[19] Qing Zhang,et al. Aggregate Query Answering on Anonymized Tables , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[20] Vijay S. Iyengar,et al. Transforming data to satisfy privacy constraints , 2002, KDD.
[21] Ninghui Li,et al. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[22] Ashwin Machanavajjhala,et al. l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.
[23] Pierangela Samarati,et al. Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..
[24] C. A. Murthy,et al. Maxdiff kd-trees for data condensation , 2006, Pattern Recognit. Lett..