Set partitions, tableaux, and subspace profiles under regular split semisimple matrices

We introduce a family of univariate polynomials indexed by integer partitions. At prime powers they count the number of subspaces in a finite vector space that transform under a regular diagonal matrix in a specified manner. At 1, they count set partitions with specified block sizes. At 0, they count standard tableaux of specified shape. At −1 they count standard shifted tableaux of a specified shape. These polynomials are generated by a new statistic on set partitions (called the interlacing number) as well as a polynomial statistic on standard tableaux. They allow us to express q-Stirling numbers of the second kind as sums over standard tableaux and as sums over set partitions. In a special case these polynomials coincide with those defined by Touchard in his study of crossings of chord diagrams.

[1]  Margaret A. Readdy,et al.  q-Stirling numbers: A new view , 2015, Adv. Appl. Math..

[2]  Waleed A. Al-Salam,et al.  q‐Bernoulli numbers and polynomials , 1958 .

[3]  Eric Chen,et al.  The Splitting Subspace Conjecture , 2013, Finite Fields Their Appl..

[4]  J. Touchard,et al.  Sur Un Problème De Configurations Et Sur Les Fractions Continues , 1952, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[5]  Michelle L. Wachs,et al.  p, q-Stirling numbers and set partition statistics , 1990, J. Comb. Theory A.

[6]  Jeffrey B. Remmel,et al.  Q-counting rook configurations and a formula of frobenius , 1986, J. Comb. Theory A.

[7]  Sudhir R. Ghorpade,et al.  Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields , 2011, Finite Fields Their Appl..

[8]  H. Niederreiter The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .

[9]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[10]  A. Arora,et al.  Unimodular polynomial matrices over finite fields , 2019, Journal of Algebraic Combinatorics.

[11]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[12]  Ping Sun,et al.  Enumeration of Standard Young Tableaux of Shifted Strips with Constant Width , 2015, Electron. J. Comb..

[13]  D. Knuth Subspaces, subsets, and partitions , 1971 .

[14]  Leonard Carlitz,et al.  On abelian fields , 1933 .

[15]  Martin Aigner,et al.  A Course in Enumeration , 2007 .

[16]  Rosena R. X. Du,et al.  Crossings and nestings of matchings and partitions , 2005, math/0501230.

[17]  Samrith Ram,et al.  Splitting subspaces of linear operators over finite fields , 2022, Finite Fields Their Appl..

[18]  Greta Panova,et al.  Tableaux and plane partitions of truncated shapes , 2010, Adv. Appl. Math..

[19]  Sudhir R. Ghorpade,et al.  Enumeration of Splitting Subspaces over Finite Fields , 2012, ArXiv.

[20]  J. A. Green,et al.  The characters of the finite general linear groups , 1955 .

[21]  Jacques Touchard Contribution à l'étude du problème des timbres poste , 1950 .

[22]  F. Knüppel,et al.  k-fold anti-invariant subspaces of a linear mapping , 2003 .