Kinetic Data Structures
暂无分享,去创建一个
[1] Michiel H. M. Smid,et al. Randomized data structures for the dynamic closest-pair problem , 1998, SODA '93.
[2] L. Guibas,et al. Separation-sensitive kinetic collision detection for convex objects , 1998 .
[3] Leonidas J. Guibas,et al. Lower bounds for kinetic planar subdivisions , 1999, SCG '99.
[4] Thomas Roos,et al. Maintaining Proximity in Higher Dimensional Spaces , 1992, MFCS.
[5] Michiel H. M. Smid,et al. New techniques for exact and approximate dynamic closest-point problems , 1994, SCG '94.
[6] Leonidas J. Guibas,et al. Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..
[7] Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..
[8] Ho-Lun Cheng,et al. Dynamic Skin Triangulation , 2001, SODA '01.
[9] Jirí Matousek,et al. Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.
[10] Thomas Roos,et al. Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.
[11] Rex A. Dwyer. Convex hulls of samples from spherically symmetric distributions , 1991, Discret. Appl. Math..
[12] David G. Kirkpatrick,et al. Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..
[13] H. T. Kung,et al. On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.
[14] Cecilia R. Aragon,et al. Randomized search trees , 2005, Algorithmica.
[15] A. Rényi,et al. über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .
[16] Herbert Edelsbrunner,et al. On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.
[17] Leonidas J. Guibas,et al. Topologically sweeping an arrangement , 1986, STOC '86.
[18] Leonidas J. Guibas,et al. Compact Voronoi Diagrams for Moving Convex Polygons , 2000, SWAT.
[19] Leonidas J. Guibas,et al. Reporting Red—Blue Intersections between Two Sets of Connected Line Segments , 2002, Algorithmica.
[20] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[21] T. Ottmann,et al. Dynamical sets of points , 1984 .
[22] P. Erdös,et al. Dissection Graphs of Planar Point Sets , 1973 .
[23] Leonidas J. Guibas,et al. Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[24] David Eppstein,et al. Raising roofs, crashing cycles, and playing pool: applications of a data structure for finding pairwise interactions , 1998, SCG '98.
[25] Leonidas J. Guibas,et al. Data structures for mobile data , 1997, SODA '97.
[26] Christian Thiely. Eecient Collision Detection for Moving Polyhedra , 1995 .
[27] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[28] Leonidas J. Guibas,et al. Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..
[29] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[30] Leonidas J. Guibas,et al. Sweeping lines and line segments with a heap , 1997, SCG '97.
[31] Elmar Schömer,et al. Efficient collision detection for moving polyhedra , 1995, SCG '95.
[32] Elmar Schömer,et al. Subquadratic algorithms for the general collision detection problem , 1995 .
[33] David Eppstein,et al. Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..
[34] William H. Press,et al. Numerical recipes in C , 2002 .
[35] Mikhail J. Atallah,et al. Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[36] Raimund Seidel,et al. The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..
[37] Leonidas J. Guibas,et al. Parametric and kinetic minimum spanning trees , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[38] Tamal K. Dey,et al. Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..
[39] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[40] Sergei Bespamyatnikh,et al. An Optimal Algorithm for Closest-Pair Maintenance , 1998, Discret. Comput. Geom..
[41] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.
[42] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[43] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[44] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[45] David M. Mount. Intersection detection and separators for simple polygons , 1992, SCG '92.
[46] Leonidas J. Guibas,et al. A practical evaluation of kinetic data structures , 1997, SCG '97.
[47] Leonidas J. Guibas,et al. Euclidean proximity and power diagrams , 1998, CCCG.
[48] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[49] H. Davenport,et al. A Combinatorial Problem Connected with Differential Equations , 1965 .
[50] Leonidas J. Guibas,et al. Kinetic Medians and kd-Trees , 2002, ESA.
[51] Philip M. Hubbard,et al. Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..
[52] Vincent Hayward,et al. Efficient Collision Prediction Among Many Moving Objects , 1995, Int. J. Robotics Res..
[53] Hiroshi Imai,et al. Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.
[54] Leonidas J. Guibas,et al. Kinetic Connectivity for Unit Disks , 2001, Discret. Comput. Geom..
[55] Herbert Edelsbrunner,et al. Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..
[56] KEVIN Q. BROWN. Comments on “algorithms for reporting and counting geometric intersections” , 1981, IEEE Transactions on Computers.
[57] Michael T. Goodrich,et al. Dynamic trees and dynamic point location , 1991, STOC '91.
[58] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[59] J. Schwartz,et al. Efficient Detection of Intersections among Spheres , 1983 .
[60] Sivan Toledo,et al. Applications of parametric searching in geometric optimization , 1992, SODA '92.
[61] Piotr Indyk,et al. Probabilistic analysis for combinatorial functions of moving points , 1997, SCG '97.
[62] Bettina Speckmann,et al. Kinetic collision detection for simple polygons , 2000, SCG '00.
[63] Pankaj K. Agarwal,et al. Maintaining approximate extent measures of moving points , 2001, SODA '01.
[64] Leonidas J. Guibas,et al. Collision detection for deforming necklaces , 2002, SCG '02.
[65] Fernando Affentranger,et al. On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..
[66] Leonidas J. Guibas,et al. Maintaining the Extent of a Moving Point Set , 1997, WADS.
[67] Bettina Speckmann,et al. Kinetic Collision Detection for Simple Polygons , 2002, Int. J. Comput. Geom. Appl..
[68] Kenneth L. Clarkson,et al. Fast linear expected-time algorithms for computing maxima and convex hulls , 1993, SODA '90.
[69] Micha Sharir,et al. On levels in arrangements of lines, segments, planes, and triangles , 1997, SCG '97.
[70] Leonidas J. Guibas,et al. Kinetic data structures: a state of the art report , 1998 .
[71] Simon Kahan,et al. A model for data in motion , 1991, STOC '91.
[72] Takeshi Tokuyama,et al. On minimum and maximum spanning trees of linearly moving points , 1995, Discret. Comput. Geom..
[73] Leonidas J. Guibas,et al. Algorithmic issues in modeling motion , 2002, CSUR.
[74] Thomas Roos,et al. Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..
[75] Michel Pocchiola,et al. The visibility complex , 1993, SCG '93.
[76] Subhash Suri,et al. Kinetic connectivity of rectangles , 1999, SCG '99.
[77] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[78] Dinesh Manocha,et al. I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.
[79] Franco P. Preparata,et al. An optimal real-time algorithm for planar convex hulls , 1979, CACM.
[80] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[81] Olivier Devillers,et al. Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..
[82] L. Guibas,et al. Kinetic vertical decomposition trees , 1999 .
[83] Leonidas J. Guibas,et al. Kinetic bsps for intersecting segments and disjoint triangles , 1998, SODA 1998.
[84] Thomas Roos,et al. Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.
[85] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[86] Dinesh Manocha,et al. OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.
[87] Subhash Suri,et al. Applications of a semi-dynamic convex hull algorithm , 1990, BIT.
[88] Leonidas J. Guibas,et al. Interval methods for kinetic simulations , 1999, SCG '99.
[89] Leonidas J. Guibas,et al. Kinetic collision detection between two simple polygons , 2004, SODA '99.
[90] P. Agarwal,et al. Kinetic binary space partitions for triangles , 1998 .
[91] J.. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .
[92] Ketan Mulmuley,et al. On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..
[93] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[94] S. Rao Kosaraju,et al. Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.
[95] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[96] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[97] Leonidas J. Guibas,et al. Cylindrical static and kinetic binary space partitions , 1997, SCG '97.
[98] Leonidas J. Guibas,et al. Kinetic collision detection: algorithms and experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[99] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[100] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[101] Rex A. Dwyer. Kinder, gentler average-case analysis for convex hulls and maximal vectors , 1990, SIGA.
[102] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.
[103] Rex A. Dwyer,et al. On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.
[104] Leonidas J. Guibas,et al. Separation-sensitive collision detection for convex objects , 1998, SODA '99.
[105] Micha Sharir,et al. The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..
[106] Leonidas J. Guibas,et al. Discrete mobile centers , 2001, SCG '01.
[107] Michiel H. M. Smid,et al. Fast Algorithms for Collision and Proximity Problems Involving Moving Geometric Objects , 1994, Comput. Geom..
[108] Leonidas J. Guibas,et al. Proximity problems on moving points , 1997, SCG '97.
[109] Mark de Berg,et al. Realistic input models for geometric algorithms , 1997, SCG '97.