Kinetic Data Structures

Modeling the physical world in the computer raises problems that intertwine discrete and continuous aspects. For example, physical objects move along continuous trajectories; yet every so often discrete events occur, such as collisions between objects. In a model of objects in space, there are many discrete attributes that one may want to compute: the closest pair, the convex hull, the minimum spanning tree, etc. When the objects are in motion, the values of these attributes change over time, and it becomes necessary to keep track of them as the objects move. In this thesis, we introduce a general approach, and an analysis framework, for solving this type of problems. To keep track of a discrete attribute, we create a new type of data structure, called a kinetic data structure. A kinetic data structure is made of a proof of correctness of the attribute which is animated through time by a discrete event simulation.

[1]  Michiel H. M. Smid,et al.  Randomized data structures for the dynamic closest-pair problem , 1998, SODA '93.

[2]  L. Guibas,et al.  Separation-sensitive kinetic collision detection for convex objects , 1998 .

[3]  Leonidas J. Guibas,et al.  Lower bounds for kinetic planar subdivisions , 1999, SCG '99.

[4]  Thomas Roos,et al.  Maintaining Proximity in Higher Dimensional Spaces , 1992, MFCS.

[5]  Michiel H. M. Smid,et al.  New techniques for exact and approximate dynamic closest-point problems , 1994, SCG '94.

[6]  Leonidas J. Guibas,et al.  Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..

[7]  Micha Sharir Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..

[8]  Ho-Lun Cheng,et al.  Dynamic Skin Triangulation , 2001, SODA '01.

[9]  Jirí Matousek,et al.  Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.

[10]  Thomas Roos,et al.  Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.

[11]  Rex A. Dwyer Convex hulls of samples from spherically symmetric distributions , 1991, Discret. Appl. Math..

[12]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[13]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[14]  Cecilia R. Aragon,et al.  Randomized search trees , 2005, Algorithmica.

[15]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[16]  Herbert Edelsbrunner,et al.  On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.

[17]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[18]  Leonidas J. Guibas,et al.  Compact Voronoi Diagrams for Moving Convex Polygons , 2000, SWAT.

[19]  Leonidas J. Guibas,et al.  Reporting Red—Blue Intersections between Two Sets of Connected Line Segments , 2002, Algorithmica.

[20]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[21]  T. Ottmann,et al.  Dynamical sets of points , 1984 .

[22]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[23]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[24]  David Eppstein,et al.  Raising roofs, crashing cycles, and playing pool: applications of a data structure for finding pairwise interactions , 1998, SCG '98.

[25]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[26]  Christian Thiely Eecient Collision Detection for Moving Polyhedra , 1995 .

[27]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[28]  Leonidas J. Guibas,et al.  Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..

[29]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[30]  Leonidas J. Guibas,et al.  Sweeping lines and line segments with a heap , 1997, SCG '97.

[31]  Elmar Schömer,et al.  Efficient collision detection for moving polyhedra , 1995, SCG '95.

[32]  Elmar Schömer,et al.  Subquadratic algorithms for the general collision detection problem , 1995 .

[33]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[34]  William H. Press,et al.  Numerical recipes in C , 2002 .

[35]  Mikhail J. Atallah,et al.  Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[36]  Raimund Seidel,et al.  The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..

[37]  Leonidas J. Guibas,et al.  Parametric and kinetic minimum spanning trees , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[38]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[39]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[40]  Sergei Bespamyatnikh,et al.  An Optimal Algorithm for Closest-Pair Maintenance , 1998, Discret. Comput. Geom..

[41]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[42]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[43]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[44]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[45]  David M. Mount Intersection detection and separators for simple polygons , 1992, SCG '92.

[46]  Leonidas J. Guibas,et al.  A practical evaluation of kinetic data structures , 1997, SCG '97.

[47]  Leonidas J. Guibas,et al.  Euclidean proximity and power diagrams , 1998, CCCG.

[48]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..

[49]  H. Davenport,et al.  A Combinatorial Problem Connected with Differential Equations , 1965 .

[50]  Leonidas J. Guibas,et al.  Kinetic Medians and kd-Trees , 2002, ESA.

[51]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[52]  Vincent Hayward,et al.  Efficient Collision Prediction Among Many Moving Objects , 1995, Int. J. Robotics Res..

[53]  Hiroshi Imai,et al.  Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.

[54]  Leonidas J. Guibas,et al.  Kinetic Connectivity for Unit Disks , 2001, Discret. Comput. Geom..

[55]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[56]  KEVIN Q. BROWN Comments on “algorithms for reporting and counting geometric intersections” , 1981, IEEE Transactions on Computers.

[57]  Michael T. Goodrich,et al.  Dynamic trees and dynamic point location , 1991, STOC '91.

[58]  L. Paul Chew,et al.  Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..

[59]  J. Schwartz,et al.  Efficient Detection of Intersections among Spheres , 1983 .

[60]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[61]  Piotr Indyk,et al.  Probabilistic analysis for combinatorial functions of moving points , 1997, SCG '97.

[62]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[63]  Pankaj K. Agarwal,et al.  Maintaining approximate extent measures of moving points , 2001, SODA '01.

[64]  Leonidas J. Guibas,et al.  Collision detection for deforming necklaces , 2002, SCG '02.

[65]  Fernando Affentranger,et al.  On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..

[66]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 1997, WADS.

[67]  Bettina Speckmann,et al.  Kinetic Collision Detection for Simple Polygons , 2002, Int. J. Comput. Geom. Appl..

[68]  Kenneth L. Clarkson,et al.  Fast linear expected-time algorithms for computing maxima and convex hulls , 1993, SODA '90.

[69]  Micha Sharir,et al.  On levels in arrangements of lines, segments, planes, and triangles , 1997, SCG '97.

[70]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[71]  Simon Kahan,et al.  A model for data in motion , 1991, STOC '91.

[72]  Takeshi Tokuyama,et al.  On minimum and maximum spanning trees of linearly moving points , 1995, Discret. Comput. Geom..

[73]  Leonidas J. Guibas,et al.  Algorithmic issues in modeling motion , 2002, CSUR.

[74]  Thomas Roos,et al.  Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..

[75]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[76]  Subhash Suri,et al.  Kinetic connectivity of rectangles , 1999, SCG '99.

[77]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[78]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[79]  Franco P. Preparata,et al.  An optimal real-time algorithm for planar convex hulls , 1979, CACM.

[80]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[81]  Olivier Devillers,et al.  Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..

[82]  L. Guibas,et al.  Kinetic vertical decomposition trees , 1999 .

[83]  Leonidas J. Guibas,et al.  Kinetic bsps for intersecting segments and disjoint triangles , 1998, SODA 1998.

[84]  Thomas Roos,et al.  Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.

[85]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[86]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[87]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1990, BIT.

[88]  Leonidas J. Guibas,et al.  Interval methods for kinetic simulations , 1999, SCG '99.

[89]  Leonidas J. Guibas,et al.  Kinetic collision detection between two simple polygons , 2004, SODA '99.

[90]  P. Agarwal,et al.  Kinetic binary space partitions for triangles , 1998 .

[91]  J. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .

[92]  Ketan Mulmuley,et al.  On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..

[93]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[94]  S. Rao Kosaraju,et al.  Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.

[95]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[96]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[97]  Leonidas J. Guibas,et al.  Cylindrical static and kinetic binary space partitions , 1997, SCG '97.

[98]  Leonidas J. Guibas,et al.  Kinetic collision detection: algorithms and experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[99]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[100]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[101]  Rex A. Dwyer Kinder, gentler average-case analysis for convex hulls and maximal vectors , 1990, SIGA.

[102]  Richard C. T. Lee,et al.  Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.

[103]  Rex A. Dwyer,et al.  On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.

[104]  Leonidas J. Guibas,et al.  Separation-sensitive collision detection for convex objects , 1998, SODA '99.

[105]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[106]  Leonidas J. Guibas,et al.  Discrete mobile centers , 2001, SCG '01.

[107]  Michiel H. M. Smid,et al.  Fast Algorithms for Collision and Proximity Problems Involving Moving Geometric Objects , 1994, Comput. Geom..

[108]  Leonidas J. Guibas,et al.  Proximity problems on moving points , 1997, SCG '97.

[109]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.