Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics

[1]  P. Panda,et al.  PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation. , 2018, Biochimica et biophysica acta. Molecular cell research.

[2]  S. Lipton,et al.  Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 , 2018, Cell Death & Differentiation.

[3]  M. Naito,et al.  Pleckstrin homology domain of p210 BCR‐ABL interacts with cardiolipin to regulate its mitochondrial translocation and subsequent mitophagy , 2018, Genes to cells : devoted to molecular & cellular mechanisms.

[4]  Dan-dan Song,et al.  Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain , 2017, Cell Death & Disease.

[5]  B. Ogretmen,et al.  HPV/E7 induces chemotherapy‐mediated tumor suppression by ceramide‐dependent mitophagy , 2017, EMBO molecular medicine.

[6]  Y. Zhuang,et al.  A Phase I Study of ABC294640, a First-in-Class Sphingosine Kinase-2 Inhibitor, in Patients with Advanced Solid Tumors , 2017, Clinical Cancer Research.

[7]  V. Torchilin,et al.  The Cytotoxic Action of Cytochrome C/Cardiolipin Nanocomplex (Cyt-CL) on Cancer Cells in Culture , 2017, Pharmaceutical Research.

[8]  G. van Echten-Deckert,et al.  SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production , 2017, Autophagy.

[9]  Oliver Beutel,et al.  Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis , 2017, Journal of Cell Science.

[10]  Prashant Mishra,et al.  Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor , 2017, Cell.

[11]  H. Abeliovich,et al.  Cardiolipin Regulates Mitophagy through the Protein Kinase C Pathway* , 2017, The Journal of Biological Chemistry.

[12]  F. Goñi,et al.  Human Atg8-cardiolipin interactions in mitophagy: Specific properties of LC3B, GABARAPL2 and GABARAP , 2016, Autophagy.

[13]  M. Andreeff,et al.  Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. , 2016, Blood.

[14]  T. Wakai,et al.  High levels of sphingolipids in human breast cancer. , 2016, The Journal of surgical research.

[15]  Simon C Watkins,et al.  NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy , 2016, Cell Death and Differentiation.

[16]  M. Tallman,et al.  Emerging therapeutic drugs for AML. , 2016, Blood.

[17]  Zhongfu Zuo,et al.  Sphingosine kinase 2 promotes colorectal cancer cell proliferation and invasion by enhancing MYC expression , 2016, Tumor Biology.

[18]  Elizabeth Garrett-Mayer,et al.  The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo , 2015, Molecular Cancer Therapeutics.

[19]  B. Ogretmen,et al.  Ceramide induced mitophagy and tumor suppression. , 2015, Biochimica et biophysica acta.

[20]  Y. Hannun,et al.  Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death* , 2015, Journal of Biological Chemistry.

[21]  A. Shah,et al.  Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation , 2015, Nature Communications.

[22]  H. Lorenz,et al.  Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy , 2015, Autophagy.

[23]  Ji-Ming Ye,et al.  Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy , 2015, Autophagy.

[24]  S. Tait,et al.  Mitochondrial apoptosis: killing cancer using the enemy within , 2015, British Journal of Cancer.

[25]  J. Vance Phospholipid Synthesis and Transport in Mammalian Cells , 2015, Traffic.

[26]  S. Campello,et al.  AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 , 2014, Cell Death and Differentiation.

[27]  M. Yamashita,et al.  Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling , 2014, Cell Death and Differentiation.

[28]  M. Schlame,et al.  Metabolism and function of mitochondrial cardiolipin. , 2014, Progress in lipid research.

[29]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[30]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[31]  S. Campello,et al.  Mitochondrial dismissal in mammals, from protein degradation to mitophagy. , 2014, Biochimica et biophysica acta.

[32]  C. Mannella,et al.  Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins. , 2014, Chemistry and physics of lipids.

[33]  J. Martinou,et al.  Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. , 2014, Chemistry and physics of lipids.

[34]  V. Gandhi,et al.  Targeting the apoptosis pathway in hematologic malignancies , 2014, Leukemia & lymphoma.

[35]  H. Bayır,et al.  LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons , 2014, Autophagy.

[36]  K. Griebenow,et al.  Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. , 2014, Molecular pharmaceutics.

[37]  A. Saghatelian,et al.  Emerging roles of lipids in BCL-2 family-regulated apoptosis. , 2013, Biochimica et biophysica acta.

[38]  G. Daum,et al.  Lipids of mitochondria. , 2013, Progress in lipid research.

[39]  P. Johnston,et al.  Cancer drug resistance: an evolving paradigm , 2013, Nature Reviews Cancer.

[40]  Simon C Watkins,et al.  Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells , 2013, Nature Cell Biology.

[41]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[42]  F. Polticelli,et al.  Role of lysines in cytochrome c-cardiolipin interaction. , 2013, Biochemistry.

[43]  D. Andrews,et al.  tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation* , 2013, The Journal of Biological Chemistry.

[44]  J. Chipuk,et al.  BAK activation is necessary and sufficient to drive ceramide synthase-dependent ceramide accumulation following inhibition of BCL2-like proteins. , 2013, The Biochemical journal.

[45]  R. Youle,et al.  PINK1 is degraded through the N-end rule pathway , 2013, Autophagy.

[46]  Hardik I. Parikh,et al.  Biological Characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a Selective Sphingosine Kinase-2 Inhibitor and Anticancer Agent , 2013, PloS one.

[47]  S. Marrink,et al.  Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels , 2013, Scientific Reports.

[48]  J. MacKeigan,et al.  Downregulation of the Mitochondrial Phosphatase PTPMT1 Is Sufficient to Promote Cancer Cell Death , 2013, PloS one.

[49]  Å. Gustafsson,et al.  Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control , 2012, Circulation research.

[50]  Y. Peterson,et al.  Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy , 2012, Nature chemical biology.

[51]  S. Morad,et al.  Ceramide–Antiestrogen Nanoliposomal Combinations—Novel Impact of Hormonal Therapy in Hormone-Insensitive Breast Cancer , 2012, Molecular Cancer Therapeutics.

[52]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[53]  M. Cabot,et al.  C6-Ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth , 2012, Breast Cancer Research and Treatment.

[54]  Leaf Huang,et al.  The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles. , 2012, Biomaterials.

[55]  Sangeeta Khare,et al.  Guidelines for the use and interpretation of assays formonitoring autophagy (3rd edition) , 2016 .

[56]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[57]  T. Kuwana,et al.  Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis , 2012, Cell.

[58]  Y. Hannun,et al.  Ceramide synthases at the centre of sphingolipid metabolism and biology. , 2012, The Biochemical journal.

[59]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[60]  Y. Zhuang,et al.  Combined anticancer effects of sphingosine kinase inhibitors and sorafenib , 2011, Investigational New Drugs.

[61]  M. Angelova,et al.  Lipid packing variations induced by pH in cardiolipin-containing bilayers: the driving force for the cristae-like shape instability. , 2011, Biochimica et biophysica acta.

[62]  M. Cabot,et al.  Inhibition of acid ceramidase by a 2‐substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N‐(4‐hydroxyphenyl) retinamide , 2011, The Prostate.

[63]  John Calvin Reed,et al.  Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation , 2011, PloS one.

[64]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[65]  Y. Hannun,et al.  Novel Pathway of Ceramide Production in Mitochondria , 2011, The Journal of Biological Chemistry.

[66]  T. Sanderson,et al.  The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. , 2011, Mitochondrion.

[67]  D. C. Simpson,et al.  Sphingosine‐1‐phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[68]  L. Obeid,et al.  Developmentally Regulated Ceramide Synthase 6 Increases Mitochondrial Ca2+ Loading Capacity and Promotes Apoptosis* , 2010, The Journal of Biological Chemistry.

[69]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[70]  Youngil Lee,et al.  Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore , 2010, Autophagy.

[71]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[72]  M. Colombini,et al.  Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane , 2010, Apoptosis.

[73]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[74]  L. Fiorucci,et al.  Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. , 2009, Current medicinal chemistry.

[75]  O. Cuvillier,et al.  Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug , 2009, Molecular Cancer Therapeutics.

[76]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[77]  A. Haimovitz-Friedman,et al.  Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. elegans , 2008, Science.

[78]  G. Robertson,et al.  Combining Nanoliposomal Ceramide with Sorafenib Synergistically Inhibits Melanoma and Breast Cancer Cell Survival to Decrease Tumor Development , 2008, Clinical Cancer Research.

[79]  J. Zuckerman,et al.  Anti-apoptotic Bcl-2 Family Proteins Disassemble Ceramide Channels* , 2008, Journal of Biological Chemistry.

[80]  M. Colombini,et al.  Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins Published, JLR Papers in Press, December 11, 2007. , 2008, Journal of Lipid Research.

[81]  Y. Chun,et al.  Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. , 2008, Cancer letters.

[82]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[83]  S. Milstien,et al.  Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. , 2007, Cancer research.

[84]  P. V. Van Veldhoven,et al.  (Dihydro)ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated with the Activation of p38 Mitogen-Activated Protein Kinase and Is Abrogated by Sphingosine Kinase 1 , 2007, Molecular Cancer Research.

[85]  B. Zhivotovsky,et al.  Role of cardiolipin in cytochrome c release from mitochondria , 2007, Cell Death and Differentiation.

[86]  L. Min,et al.  Detoxifying function of cytochrome c against oxygen toxicity. , 2007, Mitochondrion.

[87]  R. Pazdur,et al.  Sorafenib for the Treatment of Advanced Renal Cell Carcinoma , 2006, Clinical Cancer Research.

[88]  R. Wanders,et al.  Identification and characterization of human cardiolipin synthase , 2006, FEBS letters.

[89]  I. Kurnikov,et al.  Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. , 2006, Biochemistry.

[90]  M. Sharpley,et al.  Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. , 2006, Biochemistry.

[91]  Robert W. Taylor,et al.  Mitochondrial DNA mutations in human disease , 2005, Nature Reviews Genetics.

[92]  Y. Hannun,et al.  A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. , 2005, The Biochemical journal.

[93]  N. Hamasaki,et al.  Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. , 2005, Current medicinal chemistry.

[94]  Yusuf A. Hannun,et al.  Biologically active sphingolipids in cancer pathogenesis and treatment , 2004, Nature Reviews Cancer.

[95]  S. Payne,et al.  Sphingosine Kinase Type 2 Is a Putative BH3-only Protein That Induces Apoptosis* , 2003, Journal of Biological Chemistry.

[96]  N. Dencher,et al.  Cardiolipin: a proton trap for oxidative phosphorylation , 2002, FEBS letters.

[97]  Y. Hannun,et al.  Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[98]  J. Shinoda,et al.  Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptotic pathway in glioma cells , 2000, Oncogene.

[99]  S. Spiegel,et al.  Involvement of Sphingosine in Mitochondria-dependent Fas-induced Apoptosis of Type II Jurkat T Cells* , 2000, The Journal of Biological Chemistry.

[100]  S. Hakomori,et al.  A possible role of sphingosine in induction of apoptosis by tumor necrosis factor‐α, in human neutrophils , 1994, FEBS letters.

[101]  R. Schreiber,et al.  Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death , 1990, Nature.

[102]  Y. Chiang,et al.  The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. , 2019, Biochimica et biophysica acta. Biomembranes.

[103]  Sarah Spiegel,et al.  Sphingosine-1-phosphate signaling and its role in disease. , 2012, Trends in cell biology.