In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain

[1]  Changgui Shi,et al.  Integrated microRNA-mRNA analyses reveal OPLL specific microRNA regulatory network using high-throughput sequencing , 2016, Scientific Reports.

[2]  J. H. Woo,et al.  PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation , 2016, Experimental neurobiology.

[3]  S. Tzeng,et al.  MicroRNA‐145 as one negative regulator of astrogliosis , 2015, Glia.

[4]  Xiaowei Wang,et al.  miRDB: an online resource for microRNA target prediction and functional annotations , 2014, Nucleic Acids Res..

[5]  N. Nordin,et al.  MiR-3099 is Overexpressed in Differentiating 46c Mouse Embryonic Stem Cells upon Neural Induction. , 2014, The Malaysian journal of medical sciences : MJMS.

[6]  Jeffrey A. Thompson,et al.  Common features of microRNA target prediction tools , 2014, Front. Genet..

[7]  Lesley S. Chaboub,et al.  Astrocyte form and function in the developing central nervous system. , 2013, Seminars in pediatric neurology.

[8]  H. Ulrich,et al.  Cell Cycle Regulation During Neurogenesis in the Embryonic and Adult Brain , 2013, Stem Cell Reviews and Reports.

[9]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[10]  C. Clarke,et al.  Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate , 2012, BMC Genomics.

[11]  Martin Reczko,et al.  DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways , 2012, Nucleic Acids Res..

[12]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[13]  King-Hwa Ling,et al.  Deep sequencing analysis of the developing mouse brain reveals a novel microRNA , 2011, BMC Genomics.

[14]  W. Krzyzosiak,et al.  Practical Aspects of microRNA Target Prediction , 2011, Current molecular medicine.

[15]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[16]  F. Verbeek,et al.  Comparison and Integration of Target Prediction Algorithms for microRNA Studies , 2010, J. Integr. Bioinform..

[17]  Hong Li,et al.  Dynamic signaling for neural stem cell fate determination , 2009, Cell adhesion & migration.

[18]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[19]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[20]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[21]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[22]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[23]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[24]  Hiroyuki Mori,et al.  Potentiation of Astrogliogenesis by STAT3-Mediated Activation of Bone Morphogenetic Protein-Smad Signaling in Neural Stem Cells , 2007, Molecular and Cellular Biology.

[25]  Dongxin Zhao,et al.  WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells , 2006 .

[26]  Ye Ding,et al.  Structure clustering features on the Sfold Web server , 2005, Bioinform..

[27]  Kenneth S. Kosik,et al.  The Elegance of the MicroRNAs: A Neuronal Perspective , 2005, Neuron.

[28]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[29]  A. Privat,et al.  Inactivation of the Glial Fibrillary Acidic Protein Gene, But Not That of Vimentin, Improves Neuronal Survival and Neurite Growth by Modifying Adhesion Molecule Expression , 2001, The Journal of Neuroscience.

[30]  M. Luskin,et al.  Erratum for Sheppard et al., Changes in the Distribution of Extracellular Matrix Components Accompany Early Morphogenetic Events of Mammalian Cortical Development , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  R. Markwald,et al.  Specific configurations of fibronectin‐containing particles correlate with pathways taken by neural crest cells at two axial levels , 1988, The Anatomical record.

[32]  W. D. Smith,et al.  Perspective , 1974 .

[33]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2009, Nature.

[34]  Dongxin Zhao,et al.  WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. , 2006, Developmental biology.