A positive mass theorem for static causal fermion systems

Asymptotically flat static causal fermion systems are introduced. Their total mass is defined as a limit of surface layer integrals which compare the measures describing the asymptotically flat spacetime and a vacuum spacetime near spatial infinity. Our definition does not involve any regularity assumptions; it even applies to singular or generalized"quantum"spacetimes. A positive mass theorem is proven. Our methods and results explain why and how the causal action principle incorporates the nonlinear effects of gravity for static systems.

[1]  Felix Finster,et al.  Banach manifold structure and infinite-dimensional analysis for causal fermion systems , 2021, Annals of Global Analysis and Geometry.

[2]  Niky Kamran,et al.  Fermionic Fock Spaces and Quantum States for Causal Fermion Systems , 2021, Annales Henri Poincaré.

[3]  F. Finster,et al.  Causal variational principles in the σ-locally compact setting: Existence of minimizers , 2020, Advances in Calculus of Variations.

[4]  F. Finster,et al.  Two-dimensional area and matter flux in the theory of causal fermion systems , 2019, International Journal of Modern Physics D.

[5]  F. Finster,et al.  A gauge fixing procedure for causal fermion systems , 2019, 1908.08445.

[6]  Oliver Fest,et al.  Measure theory , 2019, A Tool Kit for Groupoid 𝐶*-Algebras.

[7]  F. Finster,et al.  Linearized fields for causal variational principles: existence theory and causal structure , 2018, 1811.10587.

[8]  F. Finster,et al.  Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles , 2018, 1808.03177.

[9]  F. Finster Causal Fermion Systems: A Primer for Lorentzian Geometers , 2017, 1709.04781.

[10]  F. Finster,et al.  The regularized Hadamard expansion , 2017, Journal of Mathematical Analysis and Applications.

[11]  S. Yau,et al.  Positive scalar curvature and minimal hypersurface singularities , 2017, Surveys in Differential Geometry.

[12]  F. Finster,et al.  Self-Adjointness of the Dirac Hamiltonian for a Class of Non-Uniformly Elliptic Boundary Value Problems , 2015, 1512.00761.

[13]  F. Finster,et al.  Noether-like theorems for causal variational principles , 2015, 1506.09076.

[14]  M. Herzlich Universal Positive Mass Theorems , 2014, 1401.6009.

[15]  F. Finster,et al.  Perturbative description of the fermionic projector: normalization, causality and Furry's theorem , 2014, 1401.4353.

[16]  F. Finster,et al.  A Non-Perturbative Construction of the Fermionic Projector on Globally Hyperbolic Manifolds II - Space-Times of Infinite Lifetime , 2013, 1312.7209.

[17]  F. Finster,et al.  On the structure of minimizers of causal variational principles in the non-compact and equivariant settings , 2012, 1205.0403.

[18]  Christian Baer,et al.  Wave Equations on Lorentzian Manifolds and Quantization , 2007, 0806.1036.

[19]  F. Finster The Principle of the Fermionic Projector, Appendices , 2002, hep-th/0210121.

[20]  F. Finster Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials , 1998, hep-th/9809019.

[21]  S. Yau,et al.  Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background , 1998, gr-qc/9805050.

[22]  F. Finster Light-cone expansion of the Dirac sea to first order in the external potential. , 1997, hep-th/9707128.

[23]  F. Finster Definition of the Dirac sea in the presence of external fields , 1997, hep-th/9705006.

[24]  F. Finster Local U(2,2) symmetry in relativistic quantum mechanics , 1997, hep-th/9703083.

[25]  R. Howe,et al.  Review: Sigurdur Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions , 1989 .

[26]  Thomas H. Parker,et al.  On Witten's proof of the positive energy theorem , 1982 .

[27]  E. Witten A new proof of the positive energy theorem , 1981 .

[28]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[29]  R. Arnowitt,et al.  Canonical variables, expression for energy, and the criteria for radiation in general relativity , 1960 .

[30]  Brigitte Maier,et al.  Fundamentals Of Differential Geometry , 2016 .

[31]  A. Bernal,et al.  On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem , 2003, gr-qc/0306108.

[32]  S. Helgason Groups and geometric analysis , 1984 .

[33]  Paul Cherno Essential self-adjointness of powers of generators of hyperbolic equations , 1973 .

[34]  Tosio Kato Perturbation theory for linear operators , 1966 .