THE GLOBAL WEAK SOLUTION AND RELAXATION LIMITS OF THE INITIAL–BOUNDARY VALUE PROBLEM TO THE BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

The convergence and consistency of approximate solutions derived by the modified Godunov scheme for the initial–boundary value problem to a bipolar hydrodynamic model for semiconductors are proved using the compensated compactness framework. The information of weak solutions to satisfy the boundary conditions is also displayed. The zero relaxation limit of the bipolar hydrodynamic model towards the drift-diffusion model is carried out when the current relaxation time tends to zero.

[1]  Pierre Degond,et al.  On a hierarchy of macroscopic models for semiconductors , 1996 .

[2]  Pierre Degond,et al.  A steady state potential flow model for semiconductors , 1993 .

[3]  P. Degond,et al.  An energy-transport model for semiconductors derived from the Boltzmann equation , 1996 .

[4]  Stéphane Cordier,et al.  Global solutions to the isothermal Euler-Poisson plasma model , 1995 .

[5]  Bo Zhang,et al.  Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices , 1993 .

[6]  Ying Lung-an,et al.  Solutions in the large for nonhomogeneous quasilinear hyperbolic systems of equations , 1980 .

[7]  F. Poupaud,et al.  Global Solutions to the Isothermal Euler-Poisson System with Arbitrarily Large Data , 1995 .

[8]  Christian Ringhofer,et al.  A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. , 1982 .

[9]  Yue-Jun Peng,et al.  A HIERARCHY OF HYDRODYNAMIC MODELS FOR PLASMAS ZERO-RELAXATION-TIME LIMITS , 1999 .

[10]  F. Poupaud,et al.  On a system of nonlinear Boltzmann equations of semiconductor physics , 1990 .

[11]  Ansgar Jüngel,et al.  ON THE EXISTENCE AND UNIQUENESS OF TRANSIENT SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS , 1994 .

[12]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[13]  Roberto Natalini,et al.  Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Gui-Qiang G. Chen,et al.  Zero relaxation and dissipation limits for hyperbolic conservation laws , 1993 .

[15]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[16]  Kazufumi Ito,et al.  Steady-State Solutions of a One-Dimensional Hydrodynamic Model for Semiconductors , 1997 .

[17]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[18]  J. Smoller,et al.  Mixed Problems for Nonlinear Conservation Laws , 1977 .

[19]  Ansgar Jüngel QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS , 1995 .

[20]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[21]  Andreas Heidrich Global weak solutions to initial-boundary-value problems for the one-dimensional quasilinear wave equation with large data , 1994 .

[22]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[23]  Gui-Qiang G. Chen,et al.  Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics , 1989 .

[24]  Pierre Degond,et al.  On a one-dimensional steady-state hydrodynamic model , 1990 .

[25]  Ying Lung-an,et al.  Global solutions of the cauchy problem for a nonhomogeneous quasilinear hyperbolic system , 1980 .

[26]  Roberto Natalini,et al.  Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation , 1995 .

[27]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[28]  Pierangelo Marcati,et al.  The One-Dimensional Darcy's Law as the Limit of a Compressible Euler Flow , 1990 .

[29]  F. Poupaud,et al.  Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi–Dirac , 1992 .

[30]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[31]  Asymptotic Behavior of the Solution to a Nonisentropic Hydrodynamic Model of Semiconductors , 1998 .

[32]  Joseph W. Jerome,et al.  CONSISTENCY OF SEMICONDUCTOR MODELING: AN EXISTENCE/STABILITY ANALYSIS FOR THE STATIONARY VAN ROOSBROECK SYSTEM* , 1985 .

[33]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[34]  Roberto Natalini,et al.  The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations , 1996 .