Advanced functional properties in nanoporous coordination framework materials.

Coordination framework materials display a rich array of host-guest properties and are notable amongst porous media for their extreme chemical versatility. This article highlights a number of areas where specific function has been incorporated into these framework host lattices.

[1]  J. McGarvey,et al.  One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2){Pt(CN)4}] at room temperature. , 2005, Angewandte Chemie.

[2]  K. Chapman,et al.  Reversible ferromagnetic-antiferromagnetic transformation upon dehydration-hydration of the nanoporous coordination framework, [Co3(OH)2(C4O4)2].3H2O. , 2005, Chemical communications.

[3]  K. Chapman,et al.  Reversible hydrogen gas uptake in nanoporous Prussian Blue analogues. , 2005, Chemical communications.

[4]  E. Cussen,et al.  Permanent microporosity and enantioselective sorption in a chiral open framework. , 2004, Journal of the American Chemical Society.

[5]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[6]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[7]  Baughman,et al.  Materials with negative compressibilities in one or more dimensions , 1998, Science.

[8]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[9]  Kosmas Prassides,et al.  Zero thermal expansion in a Prussian Blue analogue. , 2004, Journal of the American Chemical Society.

[10]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[11]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[12]  C. Kepert,et al.  Reversible guest exchange and ferrimagnetism (T(C) = 60.5 K) in a porous cobalt(II)-hydroxide layer structure pillared with trans-1,4-cyclohexanedicarboxylate. , 2003, Inorganic chemistry.

[13]  L. Dai Chiral metal-organic assemblies--a new approach to immobilizing homogeneous asymmetric catalysts. , 2004, Angewandte Chemie.

[14]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[15]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[16]  Bin Zhang,et al.  Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. , 2004, Chemical communications.

[17]  K. Chapman,et al.  Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis. , 2005, Journal of the American Chemical Society.

[18]  C. Kepert,et al.  Layered cobalt hydroxysulfates with both rigid and flexible organic pillars: synthesis, structure, porosity, and cooperative magnetism. , 2001, Journal of the American Chemical Society.

[19]  G. A. Abakumov,et al.  Photomechanical properties of rhodium(I)-semiquinone complexes. The structure, spectroscopy, and magnetism of (3,6-di-tert-butyl-1,2-semiquinonato)dicarbonylrhodium(I) , 1992 .

[20]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[21]  K. Chapman,et al.  Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues MIIPtIV(CN)6·x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd) , 2005 .

[22]  K. Hashimoto,et al.  Solvatomagnetism-induced Faraday effect in a cobalt hexacyanochromate-based magnet. , 2003, Journal of the American Chemical Society.

[23]  J. Ripmeester,et al.  In situ switching of sorbent functionality as monitored with hyperpolarized (129)Xe NMR spectroscopy. , 2001, Journal of the American Chemical Society.

[24]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[25]  C. Rovira,et al.  A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties , 2003, Nature materials.

[26]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[27]  B. Abrahams,et al.  Zinc saccharate: a robust, 3D coordination network with two types of isolated, parallel channels, one hydrophilic and the other hydrophobic. , 2003, Angewandte Chemie.

[28]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[29]  A. Goeta,et al.  Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability. , 2003, Angewandte Chemie.

[30]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[31]  M. Green,et al.  Synthesis and characterization of a porous magnetic diamond framework, Co3(HCOO)6, and its N2 sorption characteristic. , 2005, Inorganic chemistry.

[32]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[33]  G. J. Halder,et al.  In situ single-crystal X-ray diffraction studies of desorption and sorption in a flexible nanoporous molecular framework material. , 2005, Journal of the American Chemical Society.

[34]  H. Kitagawa,et al.  Highly proton-conductive copper coordination polymer, H2dtoaCu (H2dtoa=dithiooxamide anion) , 2003 .

[35]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[36]  M. P. Suh,et al.  Dynamic and redox active pillared bilayer open framework: single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. , 2004, Journal of the American Chemical Society.

[37]  Gerhard Klebe,et al.  A Radical Anion Salt of 2,5‐Dimethyl‐N,N′‐dicyanoquinonediimine with Extremely High Electrical Conductivity , 1986 .

[38]  P. Gütlich,et al.  Spin Crossover in Transition Metal Compounds II , 2004 .

[39]  M. Rosseinsky,et al.  Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility ☆ , 2004 .

[40]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[41]  D. E. Partin,et al.  The Disordered Crystal Structures of Zn(CN)2and Ga(CN)3 , 1997 .