First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems

Healthy aquifers deliver important ecosystem services, e.g. the purification of infiltrating water and the storage of high-quality water over decades in significant quantities. The functioning of terrestrial and surface aquatic ecosystems directly depends on groundwater and vice versa. Nowadays, legislation has started to consider groundwater not only as a resource but as a living ecosystem. The assessment of ecosystems requires consideration of ecological criteria, which, so far, are not available for groundwater systems. In the framework of a project supported by the German Federal Environment Agency (UBA), a first concept for the ecological assessment of groundwater ecosystems is developed. Steps to be taken are introduced, with a strong focus on microbes as potential bioindicators. These include (1) the typology of groundwater ecosystems, (2) the derivation of natural background values, (3) the identification of potential bioindicators, and (4) the development of an assessment model. First successes and difficulties associated with these challenges, e.g. the lack of simple correlations between abiotic and biotic variables, are discussed on the basis of a data set from a local and regional aquifer in NE Germany. The need for collaboration between ecologists, hydrogeologists and geochemists, as well as the application of modern approaches such as multivariate statistics, is emphasized.RésuméPremiers essais vers un concept intégré de l’évaluation écologique des écosystèmes des eaux souterrainesLes aquifères en bonne santé rendent des services importants aux écosystèmes, comme par exemple la purification de l’infiltration des précipitations et de l’eau de surface, ou le stockage durant des décennies d’eau de bonne qualité en quantité significative. Le fonctionnement des écosystèmes terrestres et aquatiques de surface dépend directement des eaux souterraines et vice versa. De nos jours, la règlementation a commence à s’intéresser aux eaux souterraines non seulement en tant que ressource, mais aussi en tant qu’écosystème vivant. L’évaluation des écosystèmes fait appel à des critères écologiques, qui, jusqu’à présent, ne sont pas disponibles pour les systèmes des eaux souterraines. Dans le cadre d’un projet de recherche financé par l’Agence Fédérale Allemande pour l’Environnement (UBA), un premier concept pour une évaluation écologique des écosystèmes d’eau souterraine a été développé. Des étapes à prendre en compte sont introduites, avec un intérêt particulier sur le rôle potentiel des microbes en tant que bio-indicateurs. Elles comprennent (1) la typologie des écosystèmes des eaux souterraines, (2) les valeurs de fond naturel qui en résulte, (3) l’identification de bio-indicateurs potentiels, et (4) le développement d’un modèle d’évaluation. Quelques unes des difficultés posées par ces problèmes, tel que l’absence de corrélation simple entre les variables biotiques et abiotiques, sont discutées sur la base du premier jeu de données provenant d’un aquifère local et régional du NE de l’Allemagne. L’accent est mis sur la nécessité d’une collaboration entre les écologues, les hydrogéologues et les géochimistes ainsi que sur l’utilisation des statistiques multivariées.KurzfassungÖkologisch intakte Grundwasserleiter üben wichtige Ökosystemleistungen aus, z.B. reinigen sie infiltrierendes Wasser und speichern dieses über Jahrzehnte in bester Qualität und in ausreichenden Mengen. Auch die Integrität von terrestrischen Ökosystemen und Oberflächengewässern hängt direkt von Grundwassersystemen ab und vice versa. Mittlerweile haben auch Umweltbehörden und Gesetzgeber erkannt, dass Grundwasser nicht nur eine Ressource, sondern auch Lebensraum ist. Die systemare Beurteilung von Grundwasservorkommen benötigt ökologische Kriterien und biologische Indikatoren, die es bisher in diesem Bereich nicht gibt. Im Rahmen eines Forschungsprojekts, gefördert vom Deutschen Umweltbundesamt (UBA), wurde ein erstes Konzept zur biologischen Beurteilung von Grundwasserökosystemen entwickelt. Es werden die dabei eingeschlagenen Entwicklungsschritte vorgestellt und die Eignung von Mikroorganismen als potentielle Bioindikatoren aufgezeigt. Das Konzept umfasst bisher (1) die Typologisierung von Grundwasserökosystemen, (2) die Ableitung von natürlichen Hintergrundwerten, (3) die Identifizierung von möglichen Bioindikatoren und (4) die Synthese in einem Beurteilungsmodell. Einige der Schwierigkeiten bei dieser Herausforderung, z.B. das Fehlen direkter Zusammenhänge zwischen abiotischen und biotischen Messgrößen, werden auf Basis eines ersten Datensatzes von einem lokalen und regionalen Aquifer im Nordosten Deutschlands diskutiert. Die Notwendigkeit einer interdisziplinären Zusammenarbeit von Ökologen, Hydrogeologen und Geochemikern, als auch der Einsatz moderner Multivariater Statistik wird betont.ResumenPrimeros intentos hacia un enfoque integrador para la evaluaciónEcológica de ecosistemas en aguas subterráneas. Los acuíferos saludables proveen servicios ecosistémicos importantes, por ejemplo la purificación de aguas de lluvia y de agua superficial infiltradas y el almacenamiento por décadas de cantidades significativas de aguas de muy buena calidad. El funcionamiento de ecosistemas acuáticos superficiales depende directamente de las aguas subterráneas, y viceversa. En la actualidad, la legislación ha comenzado a considerar al agua subterránea no solamente como un recurso sino como un ecosistema vivo. La evaluación de los ecosistemas requiere de la consideración de criterios ecológicos que, al corriente, no se disponen para los sistemas de aguas subterráneas. En el marco de un proyecto de investigación financiado por la Agencia Alemana del Ambiente (UBA), se han desarrollado los primeros conceptos para la evaluación ecológica de los sistemas de aguas subterráneas. Se presentan los pasos a seguir, con un énfasis particular en los microbios como bioindicadores potenciales. Tales pasos incluyen (1) la tipología de los ecosistemas de aguas subterráneas, (2) la derivación de los valores naturales de base, (3) la identificación de bioindicadores potenciales, y (4) el desarrollo de modelos de evaluación. Algunas de las dificultades asociadas con este intento, por ejemplo la ausencia de correlaciones simples entre variables abióticas y bióticas, se discuten sobre la base de los primeros datos locales y regionales de un acuífero en el NE de Alemania. Se enfatiza la necesidad de colaboración entre ecólogos, hidrogeólogos y geoquímicos, así como la aplicación de estadística multivariada.ResumoPrimeiras tentativas para definir um conceito integrador na avaliação ecológica dos ecossistemas em águas subterrâneas. Os aquíferos salubres desempenham funções importantes nos ecossistemas, i.e. a purificação da água de precipitação e da água superficial que se infiltra e o armazenamento de água de elevada qualidade e em quantidade significativa, durante décadas. O funcionamento dos ecossistemas terrestres e aquáticos depende directamente da água subterrânea e vice-versa. Actualmente, a legislação começou a considerar a água subterrânea não só como um recurso, mas também como um ecossistema vivo. A avaliação dos ecossistemas requer a utilização de critérios ecológicos o que, até agora, não está disponível para sistemas hídricos subterrâneos. No âmbito dum projecto de pesquisa apoiado pela Agência Ambiental da Alemanha Federal (UBA), foi desenvolvido um primeiro conceito para a avaliação ecológica dos ecossistemas em águas subterrâneas. Foram introduzidos passos, a serem considerados, centrados principalmente nos micróbios como bioindicadores potenciais. Estes incluem (1) a tipologia dos ecossistemas em águas subterrâneas, (2) a derivação dos valores de fundo natural, (3) a identificação de potenciais bioindicadores, e (4) o desenvolvimento de um modelo de avaliação. Algumas das dificuldades associadas a estes desafios, i.e., a falta de correlações simples entre variáveis abióticas e bióticas, são discutidas com base no primeiro conjunto de dados de um aquífero local e regional, situado no NE da Alemanha. É enfatizada a necessidade de colaboração entre ecologistas, hidrogeólogos e geoquímicos, assim como a aplicação de estatística multivariada.

[1]  S. Dhillion,et al.  Integrative ecological restoration and the involvement of local communities in the Tehuacán-Cuicatlán Valley, Mexico , 2004, Environmental Conservation.

[2]  P. Ghetti Biological indicators of the quality of running waters , 1980 .

[3]  H. Paerl,et al.  Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. , 2003, FEMS microbiology ecology.

[4]  J. Notenboom,et al.  Present state and future prospects for groundwater ecosystems , 2003, Environmental Conservation.

[5]  P. Hancock,et al.  Human Impacts on the Stream–Groundwater Exchange Zone , 2002, Environmental management.

[6]  William F. Humphreys,et al.  Aquifers: the ultimate groundwater-dependent ecosystems , 2006 .

[7]  P. Cook,et al.  Deliberate omission or unfortunate oversight: Should stygofaunal surveys be included in routine groundwater monitoring programs? , 2007 .

[8]  J. Notenboom,et al.  Incorporating ecological perspectives in European groundwater management policy , 2004, Environmental Conservation.

[9]  C. Griebler,et al.  Efforts of the European Commission to Improve Communication between Environmental Scientists and Policy-makers , 2006, Environmental science and pollution research international.

[10]  C. Extence,et al.  Aquatic invertebrate surveys as a water quality management tool in the Anglian Water region , 1989 .

[11]  T. Hatton,et al.  Do faunal assemblages reflect the exchange intensity in groundwater zones? , 2007, Hydrobiologia.

[12]  J. Notenboom,et al.  Chapter 11.2:Incorporation of Groundwater Ecology in Environmental Policy , 2007 .

[13]  F. Malard,et al.  The use of invertebrates in ground water monitoring: A rising research field , 1996 .

[14]  J. Schijven,et al.  Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. , 2006, Water research.

[15]  N. Goldscheider,et al.  Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods , 2006 .

[16]  J. Herman,et al.  Groundwater Ecosystems and the Service of Water Purification , 2001 .

[17]  H. J. Hahn,et al.  Bewertung von Altlasten im Grundwasser anhand der Meiofaunagemeinschaften—erste Ergebnisse. , 2005 .

[18]  A. Priemé,et al.  Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland , 2006, Extremophiles.

[19]  C. Griebler,et al.  Changing Paradigms in Groundwater Ecology : from the 'Living Fossils' Tradition to the 'New Groundwater Ecology' , 2008 .

[20]  R. Heath Classification of Ground‐Water Systems of the United States , 1982 .

[21]  G. Frapporti,et al.  Statistical analysis of anthropogenic versus geochemical-controlled differences in groundwater composition in The Netherlands , 2007 .

[22]  J. Gibert,et al.  Toxicity and Bioaccumulation of Arsenic and Chromium in Epigean and Hypogean Freshwater Macroinvertebrates , 2001, Archives of environmental contamination and toxicology.

[23]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[24]  A. Boulton Chances and challenges in the conservation of groundwaters and their dependent ecosystems , 2005 .

[25]  H. Hahn,et al.  The GW-Fauna-Index: A first approach to a quantitative ecological assessment of groundwater habitats , 2006 .

[26]  Jang-Cheon Cho,et al.  Increase in Bacterial Community Diversity in Subsurface Aquifers Receiving Livestock Wastewater Input , 2000, Applied and Environmental Microbiology.

[27]  C. Griebler,et al.  Combining DAPI and SYBR Green II for the Enumeration of Total Bacterial Numbers in Aquatic Sediments , 2001 .

[28]  K. Sridhar,et al.  Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. , 2008, The Science of the total environment.

[29]  S. Brouyère,et al.  A framework for an optimised groundwater monitoring network and aggregated indicators , 2006 .

[30]  L. Deharveng,et al.  Subterranean Ecosystems: A Truncated Functional Biodiversity , 2002 .

[31]  F. Mösslacher Sensitivity of groundwater and surface water crustaceans to chemical pollutants and hypoxia : implications for pollution management , 2000 .

[32]  H. Pauwels,et al.  European aquifer typology: a practical framework for an overview of major groundwater composition at European scale , 2008 .

[33]  Andrew J. Boulton,et al.  Aquifers and hyporheic zones: Towards an ecological understanding of groundwater , 2005 .

[34]  G. Hose Assessing the Need for Groundwater Quality Guidelines for Pesticides Using the Species Sensitivity Distribution Approach , 2005 .

[35]  B. Murray,et al.  Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services , 2006 .

[36]  Payal Sampat,et al.  Deep Trouble: The Hidden Threat of Groundwater Pollution , 2000 .

[37]  T. Lueders,et al.  Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. , 2007, Environmental microbiology.

[38]  F. Mösslacher Subsurface dwelling crustaceans as indicators of hydrological conditions, oxygen concentrations, and sediment structure in an alluvial aquifer , 1998 .

[39]  Melanie J. B. Zeppel,et al.  Groundwater-dependent ecosystems in Australia: It's more than just water for rivers , 2003 .

[40]  M. Lafont,et al.  A practical concept for the ecological assessment of aquatic ecosystems: application on the River Dore in France , 2001, Aquatic Ecology.

[41]  J. Gibert,et al.  Sensitivity of epigean and hypogean freshwater macroinvertebrates to complex mixtures. Part I: Laboratory experiments. , 2002, Chemosphere.

[42]  F. Mösslacher Advantages and disadvantages of groundwater organisms for biomonitoring , 2000 .

[43]  P. Mccormick,et al.  A proposed framework for developing indicators of ecosystem health , 1993, Hydrobiologia.