Femtosecond Laser Processing as an Advantageous 3-D Technology for the Fabrication of Highly Nonlinear Chip-Scale Photonic Devices

The properties of highly nonlinear glasses for photonic devices and the advantages of processing these materials using femtosecond laser pulses are discussed in a brief review. A novel approach is proposed for the optimization of the modification process that takes into account the dispersion of the nonlinear coefficients of refraction and absorption. Numerical modeling of the pulse energy deposition into a sample of chalcogenide glass shows that the shapes and dimensions of the modified regions depend on the nonlinear coefficients.

[1]  P. Corkum,et al.  High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations , 2005 .

[2]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses: First time submicron definition of surface embossed features , 2007 .

[3]  Razvan Stoian,et al.  Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses , 2007 .

[4]  M. P. Fedoruk,et al.  Sub-critical regime of femtosecond inscription. , 2007, Optics express.

[5]  A. Gaeta,et al.  Role of dispersion in multiple-collapse dynamics. , 2004, Optics letters.

[6]  J. Leuthold,et al.  40 Gbit/s pseudo-linear transmission over one million kilometers , 2002, Optical Fiber Communication Conference and Exhibit.

[7]  Peter-Monnik Weg,et al.  Mechanisms of femtosecond laser nanosurgery of cells and tissues , 2005 .

[8]  C.L. Xu,et al.  A wide-angle vector beam propagation method , 1992, IEEE Photonics Technology Letters.

[9]  R. Osellame,et al.  Waveguide fabrication and supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[10]  A. Villeneuve,et al.  Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation , 2005 .

[11]  H S Brandi,et al.  Multiphonon absorption coefficients in solids: a universal curve , 1983 .

[12]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[13]  S Spälter,et al.  Large Kerr effect in bulk Se-based chalcogenide glasses. , 2000, Optics letters.

[14]  A. Bourgeade,et al.  Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation , 2007 .

[15]  Angela B. Seddon,et al.  Chalcogenide glasses : a review of their preparation, properties and applications , 1995 .

[16]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[17]  Mansoor Sheik-Bahae,et al.  Dispersion of Bound Electronic Nonlinear Refraction , 1991 .

[18]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[19]  O. Sugihara,et al.  Low-loss polymeric optical waveguides with large cores fabricated by hot embossing. , 2003, Optics letters.

[20]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[21]  Animesh Jha,et al.  Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption , 2001 .

[22]  A. Becker,et al.  Intensity clamping of a femtosecond laser pulse in condensed matter , 2002 .

[23]  Martin Richardson,et al.  Direct femtosecond laser writing of waveguides in As2S3 thin films. , 2004, Optics letters.

[24]  E. Romanova,et al.  Study of irradiation conditions and thermodynamics of optical glass in the problem of modification of materials by femtosecond laser pulses , 2008 .

[25]  D. I. Kulagin,et al.  FEMTOSECOND TECHNOLOGIES: Formation of microstructures in As2S3 by a femtosecond laser pulse train , 2001 .

[26]  Benjamin A. Rockwell,et al.  Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses , 1997 .

[27]  S Spälter,et al.  Strong self-phase modulation in planar chalcogenide glass waveguides. , 2002, Optics letters.

[28]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[29]  Martin,et al.  Space-time observation of an electron gas in SiO2. , 1994, Physical review letters.

[30]  Daniel W. Hewak,et al.  Fabrication and characterization of continuous wave direct UV (/spl lambda/=244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass , 2002 .

[31]  M. E. Lines,et al.  OXIDE GLASSES FOR FAST PHOTONIC SWITCHING : A COMPARATIVE STUDY , 1991 .

[32]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[33]  Daniel W. Hewak,et al.  Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass , 2007, 2110.10471.

[34]  I. Bennion,et al.  Model of the femtosecond laser inscription by a single pulse , 2007 .

[35]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.