Ultrawide Thermo-optic Tuning of PbTe Meta-Atoms.

Subwavelength Mie resonators have enabled new classes of optical antenna and nanophotonic devices and can act as the basic meta-atom constituents of low-loss dielectric metasurfaces. In any application, tunable Mie resonances are key to achieving a dynamic and reconfigurable operation. However, the active tuning of these nanoantennas is still limited and usually results in sub-linewidth resonance tuning. Here, we demonstrate the ultrawide dynamic tuning of PbTe Mie resonators fabricated via both laser ablation and a novel solution-processing approach. Taking advantage of the extremely large thermo-optic (TO) coefficient and a high refractive index of PbTe, we demonstrate high-quality factor Mie resonances that are tuned by several linewidths with temperature modulations as small as ΔT ∼ 10 K. We reveal that the origin for this exceptional tunability is due to an increased TO coefficient of PbTe at low temperatures. When combined into metasurface arrays, these effects can be exploited in ultranarrow active notch filers and metasurface phase shifters that require only a few kelvin modulation. These findings demonstrate the enabling potential of PbTe as a versatile, solution-processable, and highly tunable nanophotonic material that suggests new possibilities for meta-atom paints, coatings, and 3D metamaterials fabrication.

[1]  Pavel A. Belov,et al.  Nonlinear Transient Dynamics of Photoexcited Resonant Silicon Nanostructures , 2016 .

[2]  Jay N. Zemel,et al.  Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe , 1965 .

[3]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[4]  Brian A. Korgel,et al.  Hydrogenated Amorphous Silicon (a-Si:H) Colloids , 2010 .

[5]  A. Mikhailovsky,et al.  Widely Tunable Infrared Antennas Using Free Carrier Refraction. , 2015, Nano letters.

[6]  R. Alcubilla,et al.  All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region , 2014, Nature Communications.

[7]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[8]  Isabelle Rodriguez,et al.  Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region , 2013, Nature Communications.

[9]  Alfred Leitenstorfer,et al.  Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared. , 2016, Physical review letters.

[10]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[11]  F. Meseguer,et al.  Mirror-image-induced magnetic modes. , 2013, ACS nano.

[12]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[13]  M. Søndergaard,et al.  Direct Evidence of Cation Disorder in Thermoelectric Lead Chalcogenides PbTe and PbS , 2013 .

[14]  Xinbing Zhao,et al.  Controllable Synthesis and Shape Evolution of PbTe Three-Dimensional Hierarchical Superstructures via an Alkaline Hydrothermal Method , 2009 .

[15]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[16]  D. J. Hill,et al.  Doubling absorption in nanowire solar cells with dielectric shell optical antennas. , 2015, Nano letters.

[17]  Nikolay I. Zheludev,et al.  All-dielectric phase-change reconfigurable metasurface , 2016, 1604.01330.

[18]  F. Meseguer,et al.  Silicon Colloids: From Microcavities to Photonic Sponges , 2008 .

[19]  Peter Nordlander,et al.  Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. , 2015, Nano letters.

[20]  M. Sinclair,et al.  Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces. , 2016, Nano letters.

[21]  M. Balkanski,et al.  Optical constants and band gap of PbTe from thin film studies between 25 and 300°K , 1974 .

[22]  R. Fenollosa,et al.  In situ size sorting in CVD synthesis of Si microspheres , 2016, Scientific Reports.

[23]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[24]  Yan Yixun,et al.  Temperature effects on the refractive index of lead telluride and zinc selenide , 1990 .

[25]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[26]  Igal Brener,et al.  Active tuning of all-dielectric metasurfaces. , 2015, ACS nano.

[27]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[28]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[29]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[30]  R. Dalven A review of the semiconductor properties of PbTe, PbSe, PbS and PbO , 1969 .

[31]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[32]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[33]  Y. Kivshar,et al.  Multipolar nonlinear nanophotonics , 2016, 1609.02057.

[34]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[35]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[36]  D. M. Trucchi,et al.  Fs-pulsed laser deposition of PbTe and PbTe/Ag thermoelectric thin films , 2014 .

[37]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[38]  M. Sinclair,et al.  III–V Semiconductor Nanoresonators—A New Strategy for Passive, Active, and Nonlinear All‐Dielectric Metamaterials , 2016, 1605.00298.

[39]  R. Penner,et al.  Synthesis of PbTe nanowire arrays using lithographically patterned nanowire electrodeposition. , 2008, Nano letters.

[40]  P. Belov,et al.  Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma. , 2015, Nano letters.

[41]  R. Tauber,et al.  Thermal and Optical Energy Gaps in PbTe , 1966 .

[42]  Prasad P. Iyer,et al.  Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators , 2016 .

[43]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[44]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[45]  Heng Wang,et al.  Temperature dependent band gap in PbX (X = S, Se, Te) , 2013 .