Reversible Codes and Its Application to Reversible DNA Codes over F4k

Coterm polynomials are introduced by Oztas et al. [a novel approach for constructing reversible codes and applications to DNA codes over the ring $F_2[u]/(u^{2k}-1)$, Finite Fields and Their Applications 46 (2017).pp. 217-234.], which generate reversible codes. In this paper, we generalize the coterm polynomials and construct some reversible codes which are optimal codes by using $m$-quasi-reciprocal polynomials. Moreover, we give a map from DNA $k$-bases to the elements of $F_{4^k}$, and construct reversible DNA codes over $F_{4^k}$ by DNA-$m$-quasi-reciprocal polynomials.

[1]  T. Aaron Gulliver,et al.  Construction of cyclic codes over 𝔽2+u𝔽2 for DNA computing , 2013, Appl. Algebra Eng. Commun. Comput..

[2]  Anthony J. Macula,et al.  DNA sequences and quaternary cyclic codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[3]  Ali Ghrayeb,et al.  Cyclic DNA codes over the ring F2[u]/(u2-1) based on the deletion distance , 2009, J. Frankl. Inst..

[4]  Irfan Siap,et al.  Lifted polynomials over F16 and their applications to DNA codes , 2013 .

[5]  Xiaojing Chen,et al.  Cyclic DNA codes over F2+uF2+vF2+uvF2 , 2015, ArXiv.

[6]  Irfan Siap,et al.  Codes over F4+vF4 and some DNA applications , 2016, Des. Codes Cryptogr..

[7]  Krishna Gopal Benerjee,et al.  On DNA Codes using the Ring Z4 + wZ4 , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[8]  Irfan Siap,et al.  On a generalization of lifted polynomials over finite fields and their applications to DNA codes† , 2015, Int. J. Comput. Math..

[9]  Bahattin Yildiz,et al.  A novel approach for constructing reversible codes and applications to DNA codes over the ring F2[u]/(u2k-1) , 2017, Finite Fields Their Appl..

[10]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[11]  Bahattin Yildiz,et al.  Cyclic codes over F2[u]/(u4-1) and applications to DNA codes , 2012, Comput. Math. Appl..

[12]  Oliver D. King,et al.  Linear constructions for DNA codes , 2005, Theor. Comput. Sci..

[13]  T. Aaron Gulliver,et al.  On cyclic DNA codes , 2012, 2013 IEEE International Symposium on Information Theory.

[14]  Keisuke Shiromoto,et al.  A Griesmer Bound for Linear Codes Over Finite Quasi-Frobenius Rings , 2003, Discret. Appl. Math..