Optimizing markov models with applications to triangular connectivity coding

In this work Markov Models are constructed to describe the asymptotic stochastical behavior of regular languages, what allows for optimal arithmetic coding of words from the language. A new method is presented for the optimization of Markov Models such that also constraints are captured that cannot be described within a regular language. The new technique is applied to the encoding of the connectivity graph of triangle meshes of low genus and boundary fraction. The resulting compression rates are up to one percent optimal and the best known upper bound for this class of models.

[1]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[2]  Martin Isenburg,et al.  Out-of-core compression for gigantic polygon meshes , 2003, ACM Trans. Graph..

[3]  Dominique Poulalhon,et al.  A bijection for triangulations of a polygon with interior points and multiple edges , 2003, Theor. Comput. Sci..

[4]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[5]  Craig Gotsman On the Optimality of Valence‐based Connectivity Coding , 2003, Comput. Graph. Forum.

[6]  Sampath Kannan,et al.  Counting and random generation of strings in regular languages , 1995, SODA '95.

[7]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[8]  Jarek Rossignac,et al.  Guaranteed 3.67v bit encoding of planar triangle graphs , 1999, CCCG.

[9]  Stefan Gumhold,et al.  New Bounds on The Encoding of Planar Triangulations , 2000 .

[10]  David J. Kriegman,et al.  Compressing large polygonal models , 2001, Proceedings Visualization, 2001. VIS '01..

[12]  Christian Sohler,et al.  Encoding a triangulation as a permutation of its point set , 1997, CCCG.

[13]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[14]  Tullio Ceccherini-Silberstein,et al.  Growth-sensitivity of context-free languages , 2003, Theor. Comput. Sci..

[15]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[16]  Stefan Gumhold,et al.  Improved cut-border machine for triangle mesh compression , 1999 .

[17]  Valerio Pascucci,et al.  Single Resolution Compression of Arbitrary Triangular Meshes with Properties , 1999, Data Compression Conference.

[18]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[19]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[20]  Martin Isenburg,et al.  Spirale Reversi: Reverse Decoding of the Edgebreaker Encoding , 1999, CCCG.

[21]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[22]  C.-C. Jay Kuo,et al.  A dual graph approach to 3D triangular mesh compression , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[23]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[24]  Jeffery R. Westbrook,et al.  Short Encodings of Planar Graphs and Maps , 1995, Discret. Appl. Math..

[25]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[26]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[27]  B. Marcus Constrained Systems and Coding for Recording Channels, in Handbook of Coding Theory, v. Finite-state Modulation Codes for Data Storage, Ieee , 2000 .

[28]  Jarek Rossignac,et al.  An Edgebreaker-Based Efficient Compression Scheme for Connectivity of Regular Meshes , 2000, CCCG.