Explicit gradient information in multiobjective optimization

This work presents an algorithm that converges to points that satisfy a first-order necessary condition of weakly Pareto solutions of multiobjective optimization problems. Hints on how to include second-order information are given. Preliminary numerical results are encouraging.

[1]  穂鷹 良介 Non-Linear Programming の計算法について , 1963 .

[2]  B. Svaiter,et al.  A steepest descent method for vector optimization , 2005 .

[3]  Ubaldo M. García-Palomares,et al.  A global quadratic algorithm for solving a system of mixed equalities and inequalities , 1981, Math. Program..

[4]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[5]  Hussein A. Abbass,et al.  An Evolutionary Algorithm for Constrained Multiobjective Optimization Problems , 2001 .

[6]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[7]  Min-Rong Chen,et al.  A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization , 2008, Eur. J. Oper. Res..

[8]  Ubaldo M. García-Palomares,et al.  New Sequential and Parallel Derivative-Free Algorithms for Unconstrained Minimization , 2002, SIAM J. Optim..

[9]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[10]  Ubaldo M. García-Palomares,et al.  A finite procedure for finding a point satisfying a system of inequalities , 1995 .

[11]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[12]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.