Bounds and New Approaches for the 3D MHD Equations

Summary. {In this paper we establish several properties concerning solutions of the 3D magnetohydrodynamic (MHD) equations including global regularity conditions, a priori bounds, and real analyticity. We also explore two new approaches to the viscous and resistive MHD equations.}

[1]  Eric Ronald Priest,et al.  Magnetic Reconnection: MHD Theory and Applications , 2000 .

[2]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[3]  Jiahong Wu Analytic results related to magneto-hydrodynamic turbulence , 2000 .

[4]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[5]  James Serrin,et al.  Mathematical Principles of Classical Fluid Mechanics , 1959 .

[6]  J. A. Shercliff,et al.  A Textbook of Magnetohydrodynamics , 1965 .

[7]  Jiahong Wu Viscous and inviscid magneto-hydrodynamics equations , 1997 .

[8]  Anastasios Mallios Remarks on "singularities" , 2002 .

[9]  P. Constantin,et al.  An Eulerian–Lagrangian Approach¶to the Navier–Stokes Equations , 2000, math/0005116.

[10]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[11]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[12]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[13]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[14]  Eric Ronald Priest,et al.  Magnetic Reconnection: Particle Acceleration , 2000 .

[15]  V. Zakharov,et al.  Variational principle and canonical variables in magnetohydrodynamics , 1970 .

[16]  P. Constantin Chapter 4 Near Identity Transformations for the Navier-Stokes Equations , 2003 .

[17]  P. Constantin,et al.  An Eulerian-Lagrangian approach for incompressible fluids: Local theory , 2000 .

[18]  Russel E. Caflisch,et al.  Remarks on Singularities, Dimension and Energy Dissipation for Ideal Hydrodynamics and MHD , 1997 .