Computational analysis of complex systems: Applications to population dynamics and networks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

[1]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[3]  Margaret B. Cozzens,et al.  Dominating sets in social network graphs , 1988 .

[4]  Stefan Wuchty,et al.  Controllability in protein interaction networks , 2014, Proceedings of the National Academy of Sciences.

[5]  H. Cooke,et al.  Human male fertility--Y-linked genes and spermatogenesis. , 1994, Human molecular genetics.

[6]  Environmental consequences and economic costs of alien species , 2005 .

[7]  R. Lande,et al.  Demographic stochasticity and Allee effect on a scale with isotropic noise , 1998 .

[8]  Metastable lifetimes in a kinetic Ising model: Dependence on field and system size. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Bernt-Erik Sæther,et al.  DEMOGRAPHIC STOCHASTICITY AND ALLEE EFFECTS IN POPULATIONS WITH TWO SEXES , 2003 .

[10]  R. Taylor Switchings Constrained to 2-Connectivity in Simple Graphs , 1982 .

[11]  Emergence of pulled fronts in fermionic microscopic particle models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. HilleRisLambers,et al.  Abiotic and biotic resistance to grass invasion in serpentine annual plant communities , 2009, Oecologia.

[13]  Hyunju Kim,et al.  Degree-based graph construction , 2009, 0905.4892.

[14]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Hans L. Bodlaender,et al.  Exact algorithms for dominating set , 2011, Discret. Appl. Math..

[16]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[17]  Patrick Abbot,et al.  Population Ecology, Nonlinear Dynamics, and Social Evolution. I. Associations among Nonrelatives , 2002, The American Naturalist.

[18]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[19]  Reuven Cohen,et al.  Complex Networks: Structure, Robustness and Function , 2010 .

[20]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[21]  Colin Cooper,et al.  Lower Bounds and Algorithms for Dominating Sets in Web Graphs , 2005, Internet Math..

[22]  Lin Gao,et al.  Maintain the structural controllability under malicious attacks on directed networks , 2013 .

[23]  Noga Alon,et al.  Transversal numbers of uniform hypergraphs , 1990, Graphs Comb..

[24]  P. Kareiva,et al.  Allee Dynamics and the Spread of Invading Organisms , 1993 .

[25]  Joaquín Marro,et al.  Nonequilibrium Phase Transitions in Lattice Models: Lattice gases with reaction , 1999 .

[26]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[27]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[28]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[29]  A. O. Shelton The Ecological and Evolutionary Drivers of Female‐Biased Sex Ratios: Two‐Sex Models of Perennial Seagrasses , 2010, The American Naturalist.

[30]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[31]  Craig B. Borkowf,et al.  Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman's rank correlation , 2002 .

[32]  Ángel Martín del Rey,et al.  Modeling epidemics using cellular automata , 2006, Applied Mathematics and Computation.

[33]  S. Strogatz Exploring complex networks , 2001, Nature.

[34]  Xiuzhen Cheng,et al.  Connected Dominating Set in Sensor Networks and MANETs , 2004 .

[35]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[36]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[37]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[38]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[39]  Boleslaw K. Szymanski,et al.  Minimum Dominating Sets in Scale-Free Network Ensembles , 2013, Scientific Reports.

[40]  David C. Fisher,et al.  Upper Bounds for the Domination Number of a Graph , 1996 .

[41]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[42]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[43]  T. Tanizawa,et al.  Optimization of robustness of complex networks , 2005 .

[44]  Nelly Litvak,et al.  Uncovering disassortativity in large scale-free networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  T. Caraco,et al.  Resource Consumption Variance Within and Among Individuals: On Coloniality in Spiders , 1995 .

[46]  S. Daan,et al.  Adaptive seasonal variation in the sex ratio of kestrel broods , 1990 .

[47]  Anant P. Godbole,et al.  On the Domination Number of a Random Graph , 2001, Electron. J. Comb..

[48]  György Szabó,et al.  Dynamics of populations on the verge of extinction , 2005 .

[49]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[50]  S. Orszag,et al.  Nucleation and relaxation from meta-stability in spatial ecological models. , 1999, Journal of theoretical biology.

[51]  D. Macdonald,et al.  Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco) , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  M. Schreckenberg Modeling Complex Systems , 2004 .

[53]  Aravind Srinivasan,et al.  Structural and algorithmic aspects of massive social networks , 2004, SODA '04.

[54]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[55]  S. Frank Hierarchical selection theory and sex ratios. I. General solutions for structured populations. , 1986, Theoretical population biology.

[56]  Reuven Cohen,et al.  Stability and topology of scale-free networks under attack and defense strategies. , 2005, Physical review letters.

[57]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[58]  Katja Lindenberg,et al.  Extinction in population dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  S. N. Dorogovtsev,et al.  Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model , 2000, cond-mat/0004434.

[60]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[61]  P. Adler,et al.  A meta‐analysis of biotic resistance to exotic plant invasions , 2004 .

[62]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[63]  Jay Odenbaugh,et al.  Idealized, Inaccurate but Successful: A Pragmatic Approach to Evaluating Models in Theoretical Ecology , 2005 .

[64]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[65]  Tao Jia,et al.  Control Capacity and A Random Sampling Method in Exploring Controllability of Complex Networks , 2013, Scientific Reports.

[66]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[67]  T. Caraco,et al.  Spatial dynamics of invasion: the geometry of introduced species. , 2005, Journal of theoretical biology.

[68]  P. Fulé,et al.  Restoration Ecology , 1987, Restoration & Management Notes.

[69]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[70]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[71]  Joachim Kneis,et al.  Partial vs. Complete Domination: t-Dominating Set , 2007, SOFSEM.

[72]  Structure factors and their distributions in driven two-species models , 1997, cond-mat/9712110.

[73]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[74]  Adilson E Motter,et al.  Network observability transitions. , 2012, Physical review letters.

[75]  David B. Lindenmayer,et al.  The Focal‐Species Approach and Landscape Restoration: a Critique , 2002 .

[76]  Karen D. Holl,et al.  Paying for Restoration , 2000 .

[77]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[78]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[79]  Vangelis Th. Paschos,et al.  Fast algorithms for min independent dominating set , 2013, Discret. Appl. Math..

[80]  Mildred Dickeman Demographic Consequences of Infanticide in Man , 1975 .

[81]  Jens Krause,et al.  The evolutionary and ecological consequences of animal social networks: emerging issues. , 2014, Trends in ecology & evolution.

[82]  Elliott Sober The Nature of Selection: Evolutionary Theory in Philosophical Focus , 1986 .

[83]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[84]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[85]  Abhay Parekh,et al.  Analysis of a Greedy Heuristic for Finding Small Dominating Sets in Graphs , 1991, Inf. Process. Lett..

[86]  Boleslaw K. Szymanski,et al.  Dominating Scale-Free Networks Using Generalized Probabilistic Methods , 2014, Scientific reports.

[87]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[88]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[89]  T. Caraco,et al.  Fisher waves and front roughening in a two-species invasion model with preemptive competition. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  M. Feldman,et al.  Cultural transmission and evolution: a quantitative approach. , 1981, Monographs in population biology.

[91]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[92]  D. Grünbaum The logic of ecological patchiness , 2012, Interface Focus.

[93]  Ali Pinar,et al.  Are We There Yet? When to Stop a Markov Chain while Generating Random Graphs , 2012, WAW.

[94]  U. Tauber,et al.  TOPICAL REVIEW: Applications of field-theoretic renormalization group methods to reaction diffusion problems , 2005, cond-mat/0501678.

[95]  Alessandro Vespignani,et al.  Cut-offs and finite size effects in scale-free networks , 2003, cond-mat/0311650.

[96]  Periklis Gogas,et al.  A Novel Banking Supervision Method Using the Minimum Dominating Set , 2013 .

[97]  K. Laland,et al.  Gene-culture coevolution and sex ratios: the effects of infanticide, sex-selective abortion, sex selection, and sex-biased parental investment on the evolution of sex ratios. , 1994, Theoretical population biology.

[98]  J. Mann,et al.  Cultural transmission of tool use in bottlenose dolphins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[100]  Isabelle Stanton,et al.  Constructing and sampling graphs with a prescribed joint degree distribution , 2011, JEAL.

[101]  R. Zia,et al.  Novel Phase Transitions in Biased Diffusion of Two Species , 1995 .

[102]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[103]  T. Caraco,et al.  Ecological invasion: spatial clustering and the critical radius , 2007 .

[104]  R. Pastor-Satorras,et al.  Generation of uncorrelated random scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  Yamir Moreno,et al.  Distance-d covering problems in scale-free networks with degree correlations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Allison K. Shaw,et al.  Sex-Biased Dispersal and the Speed of Two-Sex Invasions , 2011, The American Naturalist.

[107]  R. Blaustein Kudzu's invasion into Southern United states life and culture , 2001 .

[108]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[109]  Derek Ruths,et al.  Control Profiles of Complex Networks , 2014, Science.

[110]  B. Haddad,et al.  Socially Strategic Ecological Restoration: A Game-Theoretic Analysis Shortened: Socially Strategic Restoration , 2006 .

[111]  Zhang Min Distributed Heuristic Approximation Algorithm for Minimum Connected Dominating Set , 2009 .

[112]  Shlomo Havlin,et al.  Conditions for viral influence spreading through multiplex correlated social networks , 2014, 1404.3114.

[113]  L. Eberly,et al.  Sex differences in learning in chimpanzees , 2004, Nature.

[114]  B. Latané,et al.  Spatial clustering in the conformity game: Dynamic social impact in electronic groups. , 1996 .

[115]  Ludek Berec,et al.  Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. , 2002, Journal of theoretical biology.

[116]  Boleslaw K. Szymanski,et al.  Threshold-limited spreading in social networks with multiple initiators , 2013, Scientific Reports.

[117]  T. Caraco,et al.  Restoration Ecology: Two-Sex Dynamics and Cost Minimization , 2013, PLoS ONE.

[118]  Christian Laforest,et al.  Hardness results and approximation algorithms of k-tuple domination in graphs , 2004, Inf. Process. Lett..

[119]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[120]  D. Weeks,et al.  Two-Sex Models: Chaos, Extinction, and Other Dynamic Consequences of Sex , 1986, The American Naturalist.

[121]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  S. Karlin,et al.  Theoretical studies on sex ratio evolution. , 1989, Monographs in population biology.

[123]  D. Watts,et al.  Influentials, Networks, and Public Opinion Formation , 2007 .

[124]  J. Zoller,et al.  Probing models of information spreading in social networks , 2014, ArXiv.

[125]  W. Hamilton Extraordinary Sex Ratios , 1967 .

[126]  H. Bauke Parameter estimation for power-law distributions by maximum likelihood methods , 2007, 0704.1867.

[127]  Tatsuya Akutsu,et al.  Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control , 2012 .

[128]  van Aernout Enter Statistical Mechanics, A Short Treatise , 2000 .

[129]  D. Boukal,et al.  Linking the Allee Effect, Sexual Reproduction, and Temperature‐Dependent Sex Determination Via Spatial Dynamics , 2001, The American Naturalist.

[130]  Stochastic multiscale modeling of metal foams , 2014 .

[131]  Toshihiro Tanizawa,et al.  Structural robustness and transport efficiency of complex networks with degree correlation , 2012, ArXiv.

[132]  Chuang Liu,et al.  Information spreading on dynamic social networks , 2012, Commun. Nonlinear Sci. Numer. Simul..

[133]  B K Szymanski,et al.  Host spatial heterogeneity and extinction of an SIS epidemic. , 1998, Journal of theoretical biology.

[134]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[135]  Rex E. Jung,et al.  MIGRAINE: MRI Graph Reliability Analysis and Inference for Connectomics , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[136]  L. Arnold Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models , 2001 .

[137]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[138]  Robert E. Tarjan,et al.  A Note on Finding the Bridges of a Graph , 1974, Inf. Process. Lett..

[139]  S. Havlin,et al.  Optimization of network robustness to waves of targeted and random attacks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  I. Karsai,et al.  The interplay of sex ratio, male success and density-independent mortality affects population dynamics , 2010 .

[141]  Thilo Gross,et al.  All scale-free networks are sparse. , 2011, Physical review letters.

[142]  Víctor M Eguíluz,et al.  Epidemic threshold in structured scale-free networks. , 2002, Physical review letters.

[143]  Yan Shi,et al.  On positive influence dominating sets in social networks , 2011, Theor. Comput. Sci..

[144]  A. Bonato,et al.  Dominating Biological Networks , 2011, PloS one.

[145]  T. Caraco,et al.  Ecological Invasion, Roughened Fronts, and a Competitor’s Extreme Advance: Integrating Stochastic Spatial-Growth Models , 2009, Bulletin of mathematical biology.

[146]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[147]  I. Hastings Manifestations of sexual selection may depend on the genetic basis of sex determination , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[148]  Kevin E. Bassler,et al.  Efficient and Exact Sampling of Simple Graphs with Given Arbitrary Degree Sequence , 2010, PloS one.

[149]  Jie Sun,et al.  Controllability transition and nonlocality in network control. , 2013, Physical review letters.

[150]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[151]  Edward A. Codling,et al.  Mathematical and theoretical ecology: linking models with ecological processes , 2012, Interface Focus.

[152]  Stephens,et al.  Consequences of the Allee effect for behaviour, ecology and conservation. , 1999, Trends in ecology & evolution.

[153]  J. Yoshimura,et al.  Sustainable sex ratio in lattice populations , 2006 .

[154]  T. Caraco,et al.  Preemptive spatial competition under a reproduction-mortality constraint. , 2009, Journal of theoretical biology.

[155]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000 .

[156]  F. Toschi,et al.  Growth, competition and cooperation in spatial population genetics. , 2012, Theoretical population biology.

[157]  P. Amarasekare Competitive coexistence in spatially structured environments: a synthesis , 2003 .

[158]  T. Caraco,et al.  Extraordinary Sex Ratios: Cultural Effects on Ecological Consequences , 2012, PloS one.

[159]  Endre Csóka,et al.  Emergence of bimodality in controlling complex networks , 2013, Nature Communications.

[160]  S. Daan,et al.  Extreme adaptive modification in sex ratio of the Seychelles warbler's eggs , 1997, Nature.

[161]  Abdel-Rahman Hedar,et al.  Hybrid Genetic Algorithm for Minimum Dominating Set Problem , 2010, ICCSA.

[162]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[163]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[164]  LELAND J. JACKSON,et al.  An Introduction to the Practice of Ecological Modeling , 2000 .

[165]  S. Handel,et al.  DIRECTING SPATIAL PATTERNS OF RECRUITMENT DURING AN EXPERIMENTAL URBAN WOODLAND RECLAMATION , 2000 .

[166]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[167]  Anupama Potluri,et al.  Two Hybrid Meta-heuristic Approaches for Minimum Dominating Set Problem , 2011, SEMCCO.

[168]  R. Holt,et al.  Allee Effects, Invasion Pinning, and Species’ Borders , 2001, The American Naturalist.

[169]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[170]  Tatsuya Akutsu,et al.  Structural controllability of unidirectional bipartite networks , 2013, Scientific Reports.

[171]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[172]  R. Shaw,et al.  The Selective Significance of the Sex Ratio , 1953, The American Naturalist.

[173]  Ronald W. Griffiths,et al.  Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region , 1991 .

[174]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[175]  Alexandre Salles da Cunha,et al.  The Minimum Connected Dominating Set Problem: Formulation, Valid Inequalities and a Branch-and-Cut Algorithm , 2011, INOC.

[176]  Wayne Goddard,et al.  Independent domination in graphs: A survey and recent results , 2013, Discret. Math..

[177]  Janusz W. Bialek,et al.  Updated and validated power flow model of the main continental European transmission network , 2013, 2013 IEEE Grenoble Conference.

[178]  Michele Zito,et al.  Greedy Algorithms for Minimisation Problems in Random Regular Graphs , 2001, ESA.

[179]  P. Bak,et al.  Complexity, contingency, and criticality. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[180]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[181]  Marcus W. Feldman,et al.  Gene-Culture Coevolutionary Theory: A Test Case , 1995, Current Anthropology.

[182]  Pedro M. Domingos Mining Social Networks for Viral Marketing , 2022 .

[183]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[184]  Marián Boguñá,et al.  On Local Estimations of PageRank: A Mean Field Approach , 2007, Internet Math..

[185]  Bai-lian Li,et al.  Exactly Solvable Models of Biological Invasion , 2005 .

[186]  Beate Schmittmann,et al.  Statistical mechanics of driven diffusive systems , 1995 .

[187]  T. Caraco,et al.  Invasive advance of an advantageous mutation: nucleation theory. , 2006, Theoretical population biology.

[188]  Stephen P. Ellner,et al.  Speed of invasion in lattice population models: pair-edge approximation , 1998 .

[189]  Toshiyuki Miyazaki,et al.  Emergent rewirings for cascades on correlated networks , 2005 .

[190]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[191]  J. Jaenike Sex Chromosome Meiotic Drive , 2001 .

[192]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[193]  Aaron C. Ashih,et al.  Two-sex population dynamics in space: effects of gestation time on persistence. , 2001, Theoretical population biology.

[194]  M. Gupta,et al.  Explaining Asia's “Missing Women”: A New Look at the Data , 2005 .

[195]  R. Veit,et al.  Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics , 1994 .

[196]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[197]  David Bawden,et al.  Book Review: Evolution and Structure of the Internet: A Statistical Physics Approach. , 2006 .

[198]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[199]  Hugh P. Possingham,et al.  Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management , 2000 .

[200]  Weili Wu,et al.  A greedy approximation for minimum connected dominating sets , 2004, Theor. Comput. Sci..

[201]  Tore Slagsvold,et al.  Social learning in birds and its role in shaping a foraging niche , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[202]  Wen-Xu Wang,et al.  Exact controllability of complex networks , 2013, Nature Communications.

[203]  Ludek Berec,et al.  Multiple Allee effects and population management. , 2007, Trends in ecology & evolution.

[204]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer Exact Algorithms for Counting Dominating Sets , 2009 .

[205]  Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics , 1998, cond-mat/9811079.

[206]  Alex Arenas,et al.  Effect of random failures on traffic in complex networks , 2007, SPIE International Symposium on Fluctuations and Noise.

[207]  Kei-ichi Tainaka,et al.  Lattice Population and Optimality of Sex Ratio: Effect of Sterile Male , 2008, ACRI.

[208]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[209]  CSABA BIRÓ,et al.  TWO REMARKS ON THE DOMINATION NUMBER OF GRAPHS , 2010 .

[210]  B K Szymanski,et al.  Host spatial heterogeneity and the spread of vector-borne infection. , 2001, Theoretical population biology.

[211]  Camille Roth,et al.  Generating constrained random graphs using multiple edge switches , 2010, JEAL.

[212]  M. Uyenoyama,et al.  Towards a genetic theory for the evolution of the sex ratio. III. Parental and sibling control of brood investment ratio under partial sib-mating. , 1982, Theoretical population biology.

[213]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[214]  I. Eshel Selection on sex-ratio and the evolution of sex-determination , 1975, Heredity.

[215]  U. Tauber Population oscillations in spatial stochastic Lotka-Volterra models: A field-theoretic perturbational analysis , 2012, 1206.2303.

[216]  Roger Wattenhofer,et al.  Word of Mouth: Rumor Dissemination in Social Networks , 2008, SIROCCO.

[217]  A J McKane,et al.  Stochastic models in population biology and their deterministic analogs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[218]  Ginestra Bianconi,et al.  Scale-free networks with an exponent less than two. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[219]  Maureen A. O’Malley,et al.  Do simple models lead to generality in ecology? , 2013, Trends in ecology & evolution.

[220]  J. Molofsky,et al.  A New Kind of Ecology? , 2004 .

[221]  Tatsuya Akutsu,et al.  Analysis on critical nodes in controlling complex networks using dominating sets , 2013, 2013 International Conference on Signal-Image Technology & Internet-Based Systems.

[222]  Ferenc Molnar,et al.  Simulation of reaction–diffusion processes in three dimensions using CUDA , 2011 .

[223]  Mathieu Liedloff,et al.  A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set , 2012, Discret. Math. Theor. Comput. Sci..

[224]  Boleslaw K. Szymanski,et al.  Cascading Failures in Spatially-Embedded Random Networks , 2013, PloS one.

[225]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[226]  Jie Wu,et al.  Dominating-Set-Based Searching in Peer-to-Peer Networks , 2003, GCC.