Newman-Penrose formalism in quadratic gravity

The quadratic gravity constraints are reformulated in terms of the Newman-Penrose-like quantities. In such a frame language, the field equations represent a linear algebraic system for the Ricci tensor components. In principle, a procedure for the combination of the Ricci components with standard geometric identities can be applied in a similar way as in the case of general relativity. These results could serve in various subsequent analyses and physical interpretations of admitted solutions to quadratic gravity. Here, we demonstrate the utility of such an approach by explicitly proving general propositions restricting the spacetime geometry under assumptions on a specific algebraic type of curvature tensors.

[1]  J. Podolský,et al.  Exact Black Holes in Quadratic Gravity with any Cosmological Constant. , 2018, Physical review letters.

[2]  J. Podolský,et al.  Explicit black hole solutions in higher-derivative gravity , 2018, Physical Review D.

[3]  A. Salvio Quadratic Gravity , 2018, Front. Phys..

[4]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[5]  J. Podolský,et al.  Exact solutions to quadratic gravity , 2016, 1606.02646.

[6]  K. Stelle,et al.  Spherically symmetric solutions in higher-derivative gravity , 2015, 1508.00010.

[7]  K. Stelle,et al.  Black holes in higher derivative gravity. , 2015, Physical review letters.

[8]  H. Reall,et al.  Uniqueness of the Kerr–de Sitter Spacetime as an Algebraically Special Solution in Five Dimensions , 2015, 1501.02837.

[9]  A. Smilga Supersymmetric field theory with benign ghosts , 2013, 1306.6066.

[10]  M. Ortaggio,et al.  Algebraic classification of higher dimensional spacetimes based on null alignment , 2012, 1211.7289.

[11]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[12]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[13]  Tom'avs M'alek,et al.  Type III and N solutions to quadratic gravity , 2011, 1106.0331.

[14]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[15]  H. Reall,et al.  Generalization of the Geroch–Held–Penrose formalism to higher dimensions , 2010, 1002.4826.

[16]  H. Reall,et al.  A higher dimensional generalization of the geodesic part of the Goldberg–Sachs theorem , 2009, 0908.2771.

[17]  M. Ortaggio,et al.  Ricci identities in higher dimensions , 2007, gr-qc/0701150.

[18]  V. Pravda On the classification of the Weyl tensor in higher dimensions , 2006 .

[19]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[20]  K. Stelle Classical gravity with higher derivatives , 1978 .

[21]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[22]  W. Kundt Exact solutions of the field equations: twist-free pure radiation fields , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[24]  A. Trautman,et al.  Some spherical gravitational waves in general relativity , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  W. Kundt The plane-fronted gravitational waves , 1961 .

[26]  R. R. Cuzinatto,et al.  R ) theories of gravity , 2018 .

[27]  V Pravda,et al.  Classification of the Weyl tensor in higher dimensions , 2004 .

[28]  W. Bonnor,et al.  Spherical gravitational waves , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  K. Schwarzschild Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie , 1916 .

[30]  K. Stelle Classical Gravity with Higher Derivatives 1 , 2022 .