Derived Azumaya algebras and generators for twisted derived categories

[1]  Birgit Richter,et al.  Brauer groups for commutative S-algebras , 2010, 1005.5370.

[2]  C. Simpson Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond , 2011 .

[3]  Bertrand Toën Descente fidèlement plate pour les n-champs d’Artin , 2011, Compositio Mathematica.

[4]  Carlos T. Simpson,et al.  Homotopy Theory of Higher Categories: THE MODEL STRUCTURE , 2010, 1001.4071.

[5]  Toën Bertrand,et al.  Lectures on DG-Categories , 2011 .

[6]  Rubén J. Sánchez-García,et al.  Topics in Algebraic and Topological K-Theory , 2010 .

[7]  Niles Johnson Azumaya Objects in Bicategories , 2010 .

[8]  Niles Johnson Azumaya objects in triangulated bicategories , 2010, 1005.4878.

[9]  B. Toen Flat descent for Artin n-stacks , 2009, 0911.3554.

[10]  G. Vezzosi,et al.  Caract\`eres de Chern, traces \'equivariantes et g\'eom\'etrie alg\'ebrique d\'eriv\'ee , 2009, 0903.3292.

[11]  Jacob Lurie,et al.  Higher Topos Theory (AM-170) , 2009 .

[12]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[13]  G. Vezzosi ∞-Categories mono¨õdales rigides, traces et caractere de Chern , 2009 .

[14]  Jacob Lurie,et al.  On the Classification of Topological Field Theories , 2009, 0905.0465.

[15]  Bertrand Toën Anneaux de définition des dg‐algèbres propres et lisses , 2008 .

[16]  G. Vezzosi,et al.  Chern Character, Loop Spaces and Derived Algebraic Geometry , 2008, 0804.1274.

[17]  S. Schroeer,et al.  The bigger Brauer group and twisted sheaves , 2008, 0803.3563.

[18]  Gonçalo Tabuada Differential graded versus Simplicial categories , 2007, 0711.3845.

[19]  B. Toen Higher and derived stacks: a global overview , 2006, math/0604504.

[20]  M. Schlichting Negative K-theory of derived categories , 2006 .

[21]  Gonçalo Tabuada Invariants additifs de dg-catégories , 2005, math/0507227.

[22]  Julia E. Bergner,et al.  THREE MODELS FOR THE HOMOTOPY THEORY OF HOMOTOPY THEORIES , 2005, math/0504334.

[23]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[24]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[25]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[26]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[27]  Max Lieblich Moduli of twisted sheaves and generalized Azumaya algebras , 2004 .

[28]  B. Shipley,et al.  Equivalences of monoidal model categories , 2002, math/0209342.

[29]  Bertrand Toen,et al.  Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.

[30]  V. Baranovsky Orbifold Cohomology as Periodic Cyclic Homology , 2002, math/0206256.

[31]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[32]  A. Neeman Chapter 1. Definition and elementary properties of triangulated categories , 2001 .

[33]  D. Edidin,et al.  Brauer groups and quotient stacks , 1999, math/9905049.

[34]  C. Rezk,et al.  Fibrations and homotopy colimits of simplicial sheaves , 1998, math/9811038.

[35]  B. Shipley,et al.  Algebras and Modules in Monoidal Model Categories , 1998, math/9801082.

[36]  R. Thomason The classification of triangulated subcategories , 1997, Compositio Mathematica.

[37]  O. Gabber Some theorems on azumaya algebras , 1981 .

[38]  A. Grothendieck Le groupe de Brauer , 1966 .

[39]  A. Grothendieck Le groupe de Brauer : I. Algèbres d'Azumaya et interprétations diverses , 1966 .

[40]  Chern Character , 2022 .