Derived Azumaya algebras and generators for twisted derived categories
暂无分享,去创建一个
[1] Birgit Richter,et al. Brauer groups for commutative S-algebras , 2010, 1005.5370.
[2] C. Simpson. Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond , 2011 .
[3] Bertrand Toën. Descente fidèlement plate pour les n-champs d’Artin , 2011, Compositio Mathematica.
[4] Carlos T. Simpson,et al. Homotopy Theory of Higher Categories: THE MODEL STRUCTURE , 2010, 1001.4071.
[5] Toën Bertrand,et al. Lectures on DG-Categories , 2011 .
[6] Rubén J. Sánchez-García,et al. Topics in Algebraic and Topological K-Theory , 2010 .
[7] Niles Johnson. Azumaya Objects in Bicategories , 2010 .
[8] Niles Johnson. Azumaya objects in triangulated bicategories , 2010, 1005.4878.
[9] B. Toen. Flat descent for Artin n-stacks , 2009, 0911.3554.
[10] G. Vezzosi,et al. Caract\`eres de Chern, traces \'equivariantes et g\'eom\'etrie alg\'ebrique d\'eriv\'ee , 2009, 0903.3292.
[11] Jacob Lurie,et al. Higher Topos Theory (AM-170) , 2009 .
[12] J. Lurie. Higher Topos Theory , 2006, math/0608040.
[13] G. Vezzosi. ∞-Categories mono¨õdales rigides, traces et caractere de Chern , 2009 .
[14] Jacob Lurie,et al. On the Classification of Topological Field Theories , 2009, 0905.0465.
[15] Bertrand Toën. Anneaux de définition des dg‐algèbres propres et lisses , 2008 .
[16] G. Vezzosi,et al. Chern Character, Loop Spaces and Derived Algebraic Geometry , 2008, 0804.1274.
[17] S. Schroeer,et al. The bigger Brauer group and twisted sheaves , 2008, 0803.3563.
[18] Gonçalo Tabuada. Differential graded versus Simplicial categories , 2007, 0711.3845.
[19] B. Toen. Higher and derived stacks: a global overview , 2006, math/0604504.
[20] M. Schlichting. Negative K-theory of derived categories , 2006 .
[21] Gonçalo Tabuada. Invariants additifs de dg-catégories , 2005, math/0507227.
[22] Julia E. Bergner,et al. THREE MODELS FOR THE HOMOTOPY THEORY OF HOMOTOPY THEORIES , 2005, math/0504334.
[23] B. Toën,et al. Moduli of objects in dg-categories , 2005, math/0503269.
[24] B. Toën. The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.
[25] Goncalo Tabuada. Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.
[26] G. Vezzosi,et al. Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.
[27] Max Lieblich. Moduli of twisted sheaves and generalized Azumaya algebras , 2004 .
[28] B. Shipley,et al. Equivalences of monoidal model categories , 2002, math/0209342.
[29] Bertrand Toen,et al. Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.
[30] V. Baranovsky. Orbifold Cohomology as Periodic Cyclic Homology , 2002, math/0206256.
[31] M. Bergh,et al. Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.
[32] A. Neeman. Chapter 1. Definition and elementary properties of triangulated categories , 2001 .
[33] D. Edidin,et al. Brauer groups and quotient stacks , 1999, math/9905049.
[34] C. Rezk,et al. Fibrations and homotopy colimits of simplicial sheaves , 1998, math/9811038.
[35] B. Shipley,et al. Algebras and Modules in Monoidal Model Categories , 1998, math/9801082.
[36] R. Thomason. The classification of triangulated subcategories , 1997, Compositio Mathematica.
[37] O. Gabber. Some theorems on azumaya algebras , 1981 .
[38] A. Grothendieck. Le groupe de Brauer , 1966 .
[39] A. Grothendieck. Le groupe de Brauer : I. Algèbres d'Azumaya et interprétations diverses , 1966 .
[40] Chern Character , 2022 .