A One-Line Proof of the Infinitude of Primes

über vertwandte Fragen in einer nichteuklidischen geometrie, Festschrift (1912) 170–180. 13. E. H. Lockwood, A Book of Curves. Cambridge Univ. Press, England, 1961. 14. B. J. Loe, N. Beagley, The coffee cup caustic for calculus students, College Math. J. 28 (1997) 277–284. 15. H. Poritsky, The billiard ball problem on a table with convex boundary—An illustrative dynamical problem, Ann. Math. 51 (1950) 446–470. 16. M. Rogers, Catacaustics generated by a point source, A Wolfran Web Resource, http:// demonstrations.wolfram.com/CatacausticsGeneratedByAPointSource. 17. S. H. Schot, Aberrancy: Geometry of the third derivative, Math. Mag. 51 (1978) 259–275. 18. , Geometrical properties of the penosculating conics of a plane curve, Amer. Math. Monthly 86 (1979) 449–457. 19. S. Tabachnikov, Billiards. Panoramas et Syntheses No. 1, Société Mathématique de France, France, 1995. 20. P. G. Tait, Note on the circles of curvature of a plane curve, Proc. Edinburgh Math. Soc. 14 (1896) 403. 21. A. Transon, Recherches sur la courbure des lignes et des surfaces, J. Math. Pures Appl. 6 (1841) 191–208. 22. E. W. Weisstein, Circle Catacaustic—From MathWorld, A Wolfram Web Resource, http:// mathworld.wolfram.com/CircleCatacaustic.html. 23. , Deltoid Catacaustic—From MathWorld, A Wolfram Web Resource, http://mathworld. wolfram.com/DeltoidCatacaustic.html. 24. E. J. Wilczynski, Some remarks on the historical development and the future prospects of the differential geometry of plane curves, Bull. Amer. Math. Soc. 22 (1916) 317–329. 25. T. Will, J. Boyle, Caustics generated by rolling circles, A Wolfram Web Resource, http:// demonstrations.wolfram.com/CausticsGeneratedByRollingCircles. 26. , Caustics from radiants at finite distance generated by rolling circles, A Wolfram Web Resource, http://demonstrations.wolfram.com/ CausticsFromRadiantsAtFiniteDistanceGeneratedByRollingCircle.