Dynamics for Systems of Screw Dislocations

The goal of this paper is the analytical validation of a model of Cermelli and Gurtin [Arch. Ration. Mech. Anal., 148 (1999), pp. 3--52] for an evolution law for systems of screw dislocations under the assumption of antiplane shear. The motion of the dislocations is restricted to a discrete set of glide directions, which are properties of the material. The evolution law is given by a “maximal dissipation criterion,” leading to a system of differential inclusions. Short time existence, uniqueness, cross-slip, and fine cross-slip of solutions are proved.

[1]  Luca Dieci,et al.  A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis☆ , 2013 .

[2]  Antonin Chambolle,et al.  A posteriori error estimates for the effective Hamiltonian of dislocation dynamics , 2012, Numerische Mathematik.

[3]  M. Cicalese,et al.  Variational equivalence between Ginzburg-Landau, XY spin systems and screw dislocations energies , 2009, 0907.5548.

[4]  Sylvia Serfaty,et al.  Gamma-convergence of gradient flows on Hilbert and metric spaces and applications , 2011 .

[5]  J. Hirth,et al.  Theory of Dislocations (2nd ed.) , 1983 .

[6]  Anna Vainchtein,et al.  Effect of nonlinearity on the steady motion of a twinning dislocation , 2010 .

[7]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[8]  Caterina Ida Zeppieri,et al.  Line-Tension Model for Plasticity as the Gamma-Limit of a Nonlinear Dislocation Energy , 2012, SIAM J. Math. Anal..

[9]  Adriana Garroni,et al.  Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: A Γ-Convergence Approach , 2014 .

[10]  Haim Brezis,et al.  Tourbillons de Ginzburg-Landau et énergie renormalisée , 1993 .

[11]  Sylvia Serfaty,et al.  Limiting vorticities for the Ginzburg-Landau equations , 2003 .

[12]  Paolo Cermelli,et al.  Noncrystallographic Motion of a Dislocation as a Fine Mixture of Rectilinear Paths , 2004, SIAM J. Appl. Math..

[13]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[14]  M. Peletier,et al.  Asymptotic Behaviour of a Pile-Up of Infinite Walls of Edge Dislocations , 2012, Archive for Rational Mechanics and Analysis.

[15]  Adriana Garroni,et al.  Γ-Limit of a Phase-Field Model of Dislocations , 2005, SIAM J. Math. Anal..

[16]  Avner Friedman,et al.  Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations , 1985 .

[17]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[18]  Yichao Zhu,et al.  Dislocation motion and instability , 2013 .

[19]  Morton E. Gurtin,et al.  The Motion of Screw Dislocations in Crystalline Materials Undergoing Antiplane Shear: Glide, Cross‐Slip, Fine Cross‐Slip , 1999 .

[20]  Paolo Cermelli,et al.  Fine cross slip of a screw dislocation in anti-plane shear , 2007 .

[21]  A. Garroni,et al.  Γ-Convergence Analysis of Systems of Edge Dislocations: the Self Energy Regime , 2012 .

[22]  Simone Cacace,et al.  A multi-phase transition model for dislocations with interfacial microstructure , 2009 .

[23]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  C. Zeppieri,et al.  Line-tension model for plasticity as the -limit of a nonlinear dislocation energy , 2012 .

[25]  Giovanni Leoni,et al.  Renormalized Energy and Forces on Dislocations , 2005, SIAM J. Math. Anal..

[26]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[27]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[28]  Giovanni Leoni,et al.  Gradient theory for plasticity via homogenization of discrete dislocations , 2008, 0808.2361.

[29]  Timothy Blass,et al.  Renormalized Energy and Peach-Köhler Forces for Screw Dislocations with Antiplane Shear , 2014, 1410.6200.

[30]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[31]  Y. Pellegrini,et al.  Screw and edge dislocations with time-dependent core width: From dynamical core equations to an equation of motion , 2010, 1003.5198.

[32]  S. Conti,et al.  Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models , 2010, 1003.1917.

[33]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[34]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[35]  Marcello Ponsiglione,et al.  Ginzburg-Landau functionals and renormalized energy: A revised Γ-convergence approach , 2014 .

[36]  Frank Reginald Nunes Nabarro,et al.  Theory of crystal dislocations , 1967 .

[37]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[38]  Matteo Focardi,et al.  A 1D Macroscopic Phase Field Model for Dislocations and a Second Order Γ-Limit , 2008, Multiscale Model. Simul..