Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations

We consider variational multiscale (VMS) methods with h-adaptive technique for the stationary incompressible Navier-Stokes equations. The natural combination of VMS with adaptive strategy retains the best features of both methods and overcomes many of their deficits. A reliable a posteriori projection error estimator is derived, which can be computed by two local Gauss integrations at the element level. Finally, some numerical tests are presented to illustrate the method's efficiency.

[1]  Béatrice Rivière,et al.  A two‐grid stabilization method for solving the steady‐state Navier‐Stokes equations , 2006 .

[2]  Stefano Berrone,et al.  Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .

[3]  Béatrice Rivière,et al.  Subgrid Stabilized Defect Correction Methods for the Navier-Stokes Equations , 2006, SIAM J. Numer. Anal..

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[6]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[7]  W. Layton,et al.  A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .

[8]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  W. Layton,et al.  A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..

[11]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[12]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[13]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[14]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[15]  Feng Shi,et al.  A finite element variational multiscale method for incompressible flows based on two local gauss integrations , 2009, J. Comput. Phys..

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[19]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[20]  William J. Layton,et al.  Adaptive Defect-Correction Methods for Viscous Incompressible Flow Problems , 2000, SIAM J. Numer. Anal..

[21]  Yinnian He,et al.  A stabilized finite element method based on two local Gauss integrations for the Stokes equations , 2008 .

[22]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[23]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[24]  S. Repin,et al.  ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .

[25]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[26]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[27]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[28]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[29]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[30]  Feng Shi,et al.  A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow , 2010, SIAM J. Sci. Comput..

[31]  Volker John,et al.  Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..

[32]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[33]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[34]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[35]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .