Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations
暂无分享,去创建一个
Feng Shi | Yanren Hou | Haibiao Zheng | Yanren Hou | Haibiao Zheng | F. Shi
[1] Béatrice Rivière,et al. A two‐grid stabilization method for solving the steady‐state Navier‐Stokes equations , 2006 .
[2] Stefano Berrone,et al. Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .
[3] Béatrice Rivière,et al. Subgrid Stabilized Defect Correction Methods for the Navier-Stokes Equations , 2006, SIAM J. Numer. Anal..
[4] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[5] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[6] J. Z. Zhu,et al. Superconvergence recovery technique and a posteriori error estimators , 1990 .
[7] W. Layton,et al. A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .
[8] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[9] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[10] W. Layton,et al. A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..
[11] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[12] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[13] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[14] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[15] Feng Shi,et al. A finite element variational multiscale method for incompressible flows based on two local gauss integrations , 2009, J. Comput. Phys..
[16] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[17] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[18] Thomas J. R. Hughes,et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .
[19] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[20] William J. Layton,et al. Adaptive Defect-Correction Methods for Viscous Incompressible Flow Problems , 2000, SIAM J. Numer. Anal..
[21] Yinnian He,et al. A stabilized finite element method based on two local Gauss integrations for the Stokes equations , 2008 .
[22] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[23] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[24] S. Repin,et al. ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .
[25] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[26] J. Tinsley Oden,et al. A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .
[27] Volker John,et al. A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[28] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .
[29] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[30] Feng Shi,et al. A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow , 2010, SIAM J. Sci. Comput..
[31] Volker John,et al. Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..
[32] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[33] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[34] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[35] J. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .