Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem

M-convex functions, introduced by Murota (Adv. Math. 124 (1996) 272; Math. Prog. 83 (1998) 313), enjoy various desirable properties as "discrete convex functions." In this paper, we propose two new polynomial-time scaling algorithms for the minimization of an M-convex function. Both algorithms apply a scaling technique to a greedy algorithm for M-convex function minimization, and run as fast as the previous minimization algorithms. We also specialize our scaling algorithms for the resource allocation problem which is a special case of M-convex function minimization.

[1]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[2]  Kazuo Murota,et al.  Convexity and Steinitz's Exchange Property , 1996, IPCO.

[3]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[4]  A. Zaporozhets,et al.  A polynomial algorithm for resourse allocation problems with polymatroid constrains 1 , 1996 .

[5]  Kazuo Murota,et al.  Quasi M-convex and L-convex functions--quasiconvexity in discrete optimization , 2003, Discret. Appl. Math..

[6]  Naoki Katoh,et al.  Resource Allocation Problems , 1998 .

[7]  Akiyoshi Shioura,et al.  Minimization of an M-convex Function , 1998, Discret. Appl. Math..

[8]  塩浦 昭義,et al.  Scaling Algorithms for M-convex Function Minimization (数理最適化の理論とアルゴリズム) , 2001 .

[9]  Awi Federgruen,et al.  The Greedy Procedure for Resource Allocation Problems: Necessary and Sufficient Conditions for Optimality , 1986, Oper. Res..

[10]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[11]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[12]  藤重 悟 Submodular functions and optimization , 1991 .

[13]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[14]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[15]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[16]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[17]  Kazuo Murota,et al.  Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..

[18]  B. L. Miller On Minimizing Nonseparable Functions Defined on the Integers with an Inventory Application , 1971 .

[19]  Walter Wenzel,et al.  Valuated matroids: a new look at the greedy algorithm , 1989 .

[20]  P. Favati Convexity in nonlinear integer programming , 1990 .

[21]  László Lovász,et al.  Finite and infinite sets , 1984 .

[22]  Akihisa Tamura A Coordinatewise Domain Scaling Algorithm for M-convex Function Minimization , 2002, IPCO.

[23]  Satoko Moriguchi,et al.  On Hochbaum's Scaling Algorithm for the General Resource Allocation Problem , 2002 .

[24]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[25]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[26]  Kazuo Murota,et al.  On Steepest Descent Algorithms for Discrete Convex Functions , 2003, SIAM J. Optim..

[27]  Dorit S. Hochbaum,et al.  Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems , 1994, Math. Oper. Res..

[28]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .