Comparative characterization of three bacterial exo-type alginate lyases.

[1]  S. Kawai,et al.  Structural and mutational analysis of amino acid residues involved in ATP specificity of Escherichia coli acetate kinase. , 2014, Journal of bioscience and bioengineering.

[2]  C. Kado Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens , 2014, Front. Microbiol..

[3]  Hee Taek Kim,et al.  Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases , 2014, Bioprocess and Biosystems Engineering.

[4]  Huimin Zhao,et al.  Comparative Biochemical Characterization of Three Exolytic Oligoalginate Lyases from Vibrio splendidus Reveals Complementary Substrate Scope, Temperature, and pH Adaptations , 2014, Applied and Environmental Microbiology.

[5]  S. Kawai,et al.  Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae. , 2014, Journal of bioscience and bioengineering.

[6]  S. Nair,et al.  Structure of a PL17 Family Alginate Lyase Demonstrates Functional Similarities among Exotype Depolymerases , 2014, The Journal of Biological Chemistry.

[7]  Christine Nicole S. Santos,et al.  Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform , 2013, Nature.

[8]  Y. Yoshikuni,et al.  Implementation of stable and complex biological systems through recombinase-assisted genome engineering , 2013, Nature Communications.

[9]  G. Michel,et al.  Comparative Characterization of Two Marine Alginate Lyases from Zobellia galactanivorans Reveals Distinct Modes of Action and Exquisite Adaptation to Their Natural Substrate* , 2013, The Journal of Biological Chemistry.

[10]  Hee Taek Kim,et al.  Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40 , 2012, Applied Microbiology and Biotechnology.

[11]  Christine Nicole S. Santos,et al.  An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae , 2012, Science.

[12]  Wataru Hashimoto,et al.  Bioethanol production from marine biomass alginate by metabolically engineered bacteria , 2011 .

[13]  S. Hutcheson,et al.  Carbohydrase Systems of Saccharophagus degradans Degrading Marine Complex Polysaccharides , 2011, Marine drugs.

[14]  B. Mikami,et al.  Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. , 2010, Biochimica et biophysica acta.

[15]  B. Mikami,et al.  Crystal Structure of Exotype Alginate Lyase Atu3025 from Agrobacterium tumefaciens* , 2010, The Journal of Biological Chemistry.

[16]  F. Blaine Metting,et al.  Biofuels from Microalgae and Seaweeds , 2010 .

[17]  Y. J. Kim,et al.  Production of Polysaccharides and Corresponding Sugars from Red Seaweed , 2010 .

[18]  Iain S. Donnison,et al.  Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments , 2009, Journal of Applied Phycology.

[19]  B. Mikami,et al.  Superchannel of Bacteria: Biological Significance and New Horizons , 2008, Bioscience, biotechnology, and biochemistry.

[20]  C. Payri,et al.  Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia) , 2008, Journal of Applied Phycology.

[21]  M. Cetron,et al.  Biodiesel production : a preliminary study from Jatropha Curcas , 2013 .

[22]  K. Murata,et al.  A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. , 2006, Research in microbiology.

[23]  R. Weiner,et al.  Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. , 2005, International journal of systematic and evolutionary microbiology.

[24]  S. Kawai,et al.  Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1. , 2004, Protein expression and purification.

[25]  K. Murata,et al.  An exotype alginate lyase in Sphingomonas sp. A1: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). , 2003, Protein expression and purification.

[26]  S. Kawai,et al.  Molecular Identification of Oligoalginate Lyase ofSphingomonas sp. Strain A1 as One of the Enzymes Required for Complete Depolymerization of Alginate , 2000, Journal of bacteriology.

[27]  B. Mikami,et al.  Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. , 2000, Protein expression and purification.

[28]  M. Kanehisa,et al.  Expert system for predicting protein localization sites in gram‐negative bacteria , 1991, Proteins.

[29]  I. Marx,et al.  Isolation of a New Polysaccharide-Digesting Bacterium from a Salt Marsh , 1988, Applied and environmental microbiology.

[30]  J. Hurwitz,et al.  The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. , 1959, The Journal of biological chemistry.

[31]  R. P. John,et al.  Micro and macroalgal biomass: a renewable source for bioethanol. , 2011, Bioresource technology.

[32]  G. Boons,et al.  Comprehensive glycoscience : from chemistry to systems biology , 2007 .

[33]  R. Mori Seaweed polysaccharides. , 1953, Advances in carbohydrate chemistry.