Recent trends in automatic information retrieval

Substantial successes were achieved in the early years in automatic indexing and retrieval using single term indexing theories with term weight assignments based on frequency considerations. The development of more refined indexing systems using thesaurus aids and automatically constructed term association maps changed the retrieval effectiveness only slightly. The recent introduction of the relevance concept in the form of probabilistic retrieval models provided a firm basis for term weighting and document ranking practices. However, the probabilistic methods were not helpful in substantially enhancing the retrieval effectiveness. At the present time, attempts are made to add artificial intelligence concepts to the document retrieval environment in the form of fancy graphics interfaces, learning systems for query and document indexing and for collection searching, extended logic models relating documents and information requests, and analysis methods based on the use of semantic maps and other kinds of knowledge structures. Using the earlier developments and evaluation results as guidelines, an attempt is made to outline the information retrieval environment of the future and to assess the usefulness of some of the currently proposed search and retrieval methods.

[1]  W. Bruce Croft User-specified domain knowledge for document retrieval , 1986, SIGIR '86.

[2]  Gerard Salton,et al.  Automatic Information Organization And Retrieval , 1968 .

[3]  Gerard Salton,et al.  A comparison of search term weighting: term relevance vs. inverse document frequency , 1981, SIGIR 1981.

[4]  Gerard Salton,et al.  On the Specification of Term Values in Automatic Indexing , 1973 .

[5]  Tamas E. Doszkocs,et al.  IR, NLP, AI and UFOS: or IR-relevance, natural language problems, artful intelligence and user-friendly online systems , 1986, SIGIR '86.

[6]  William S. Cooper,et al.  Foundations of Probabilistic and Utility-Theoretic Indexing , 1978, JACM.

[7]  S. K. Michael Wong,et al.  A machine learning approach in information retrieval , 1986, SIGIR '86.

[8]  George R. Cross,et al.  COREL: a conceptual retrieval system , 1986, SIGIR '86.

[9]  Marcia Davis Kerchner,et al.  Dynamic Document Processing in Clustered Collections , 1971 .

[10]  Peter Ingwersen,et al.  Improved subject access, browsing and scanning mechanisms in modern on-line IR , 1986, SIGIR '86.

[11]  Stephen E. Robertson,et al.  The Unified Probabilistic Model for IR , 1982, SIGIR.

[12]  Donald H. Kraft,et al.  Evaluation of information retrieval systems: A decision theory approach , 1978, J. Am. Soc. Inf. Sci..

[13]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[14]  Michael Lesk,et al.  Word-word associations in document retrieval systems , 1969 .

[15]  John Lyons,et al.  Introduction to Theoretical Linguistics , 1971 .

[16]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[17]  Robert N. Oddy,et al.  INFORMATION RETRIEVAL THROUGH MAN‐MACHINE DIALOGUE , 1977 .

[18]  Gerard Salton,et al.  Another look at automatic text-retrieval systems , 1986, CACM.

[19]  Yehoshua Bar-Hillel,et al.  Theoretical Aspects of the Mechanization of Literature Searching , 1962 .

[20]  Clement T. Yu Adaptive document clustering , 1985, SIGIR '85.

[21]  Stephen P. Harter,et al.  A probabilistic approach to automatic keyword indexing , 1974 .

[22]  Abraham Bookstein,et al.  Performance of self-taught documents: exploiting co-relevance structure in a document collection , 1986, SIGIR '86.

[23]  Michael E. Lesk,et al.  Computer Evaluation of Indexing and Text Processing , 1968, JACM.

[24]  W. Bruce Croft Document representation in probabilistic models of information retrieval , 1981, J. Am. Soc. Inf. Sci..

[25]  Giovanni Guida,et al.  IR-NLI : An Expert Natural Language Interface To Online Data Bases , 1983, ANLP.

[26]  C. J. van Rijsbergen,et al.  An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.

[27]  Hans Peter Luhn,et al.  A Statistical Approach to Mechanized Encoding and Searching of Literary Information , 1957, IBM J. Res. Dev..

[28]  Don R. Swanson,et al.  A decision theoretic foundation for indexing , 1975, J. Am. Soc. Inf. Sci..

[29]  Edward A. Fox,et al.  Research Contributions , 2014 .

[30]  Lauren B. Doyle,et al.  Semantic Road Maps for Literature Searchers , 1961, JACM.

[31]  Vijay V. Raghavan,et al.  User-oriented document clustering: a framework for learning in information retrieval , 1986, SIGIR '86.

[32]  A. S. Pollitt End user touch searching for cancer therapy literature: a rule based approach , 1983, SIGIR 1983.

[33]  Edward A. Fox,et al.  Advanced feedback methods in information retrieval , 1985, J. Am. Soc. Inf. Sci..

[34]  Gerard Salton,et al.  Automatic term class construction using relevance--A summary of work in automatic pseudoclassification , 1980, Inf. Process. Manag..

[35]  Donald B. Crouch The visual display of information in an information retrieval environment , 1986, SIGIR '86.

[36]  Stephen P. Harter,et al.  A probabilistic approach to automatic keyword indexing. Part II. An algorithm for probabilistic indexing , 1975, J. Am. Soc. Inf. Sci..

[37]  Fausto Rabitti ACM Conference on Research and Development in Information Retrieval: Proceedings of the Annual Conference of the Association of Computing Machinery (Pisa, Italy, September 8-10, 1986). , 1986 .