Diversity and paleoecology of Greek late Miocene mammalian faunas

Abstract The late Miocene of Macedonia has yielded several rich faunal assemblages, ranging from late Vallesian to late Turolian. They may be compared to the classical localities of Pikermi, Samos and Maragheh. Taxonomic comparisons based upon updated faunal lists allowed us to compute faunal similarity indices, which were submitted to principal component and cluster analysis. On the graphs, “Ravin de la Pluie” is always remote from the other Macedonian fossil mammal localities: it can only be explained by its Vallesian age. The other Macedonian sites cluster next, demonstrating some provinciality of this area during the Turolian. Comparisons of the frequencies of the various taxonomic groups support the installation of a more forested environment in the latest faunal set, Dytiko. The indices of diversity and the rank-abundance curves seem also to reflect a change of the ecological conditions during the Turolian: the fauna of “Ravin de la Pluie” and of the Vathylakkos-Prochoma-“Ravin des Zouaves” group is marked by the predominance of 1 or 2 species, while the species frequency of the Dytiko set is more balanced, suggesting warmer climate and less contrasted climatic conditions. Another way of evaluating the ecological significance of the fossil assemblages is the analysis of the distribution of the body weight of each category of mammals in each fauna. When possible we used the cenogram method or a multivariate analysis of the number of species in each weight class (excluding small mammals, which are very rare in Macedonia); we have analysed in this way 25 fossil and 23 recent localities. We show that, although all the fossil localities are separated from the recent ones, it is possible to deduce an open environment in “Ravin de la Pluie” and a more forested one in Dytiko.

[1]  W. Sheppe,et al.  Patterns of Use of a Flood Plain by Zambian Mammals , 1971 .

[2]  R. Graham,et al.  Coevolutionary Disequilibrium and Pleistocene Extinctions , 2022, Quaternary Extinctions.

[3]  W. R. Hamilton,et al.  INTRODUCTION TO THE MIOCENE MAMMAL FAUNAS OF GEBEL ZELTEN LIBYA , 1973 .

[4]  J. A. Peters A new approach in the analysis of biogeographic data , 1971 .

[5]  S. Legendre ANALYSIS OF MAMMALIAN COMMUNITIES FROM THE LATE EOCENE AND OLIGOCENE OF SOUTHERN FRANCE , 1986 .

[6]  J. Hublin,et al.  The Pleistocene Hominid Site of Ternifine, Algeria: New Results on the Environment, Age, and Human Industries , 1986, Quaternary Research.

[7]  B. Dawson-Saunders,et al.  Dietary adaptations and paleoecology of the Late Miocene ruminants from Pikermi and Samos in Greece , 1988 .

[8]  I. Rautenbach Ecological distribution of the mammals of the Transvaal (Vertebrata: Mamalia) , 1978 .

[9]  F. Bourlière,et al.  LES GRANDS MAMMIFÈRES DE LA RÉGION DE LAMTO, COTE D’IVOIRE , 1974 .

[10]  Q. B. Hendey Palaeoecology of the Late Tertiary fossil occurrences in 'E' quarryc Langebaanwegc South Africac and a reinterpretation of their geological context , 1981 .

[11]  P. Gingerich,et al.  Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. , 1982, American journal of physical anthropology.

[12]  J. Miller,et al.  The Fort Ternan hominoid site, Kenya: Geology, age, taphonomy and paleoecology , 1981 .

[13]  C. W. Andrews III.—Note on some Fossil Mammals from Salonica and Imbros , 1918, Geological Magazine.

[14]  G. Koufos Study of the Vallesian hipparions of the lower Axios valley(Macedonia, Greece) , 1986 .

[15]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[16]  W. R. Hamilton THE LOWER MIOCENE RUMINANTS OF GEBEL ZELTEN LIBYA , 1972 .

[17]  R. Bernor Mammalian biostratigraphy, geochronology, and zoogeographic relationships of the Late Miocene Maragheh fauna, Iran , 1986 .

[18]  P. Gingerich SIZE VARIABILITY OF THE TEETH IN LIVING MAMMALS AND THE DIAGNOSIS OF CLOSELY RELATED SYMPATRIC FOSSIL SPECIES , 1974 .

[19]  H. Kitazato,et al.  Secular changes in the oxygen isotope ratios of mollusc shells during the Holocene of Central Japan , 1987 .

[20]  R. Macarthur ON THE RELATIVE ABUNDANCE OF BIRD SPECIES. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Legendre Les communautés de mammifères du paléogène (éocène supérieur et oligocène) d'Europe occidentale : structures, milieux et évolution , 1988 .

[22]  M. Mentis ESTIMATES OF NATURAL BIOMASSES OF LARGE HERBIVORES IN THE UMFOLOZI GAME RESERVE AREA , 1970 .

[23]  N. Owen‐Smith Megafaunal extinctions: the conservation message from 11,000 years B.p. , 1989, Conservation biology : the journal of the Society for Conservation Biology.

[24]  P. Gingerich,et al.  Allometric Scaling in the Dentition of Primates and Insectivores , 1985 .

[25]  R. Macarthur,et al.  On the Relative Abundance of Species , 1960, The American Naturalist.

[26]  M. Brunet,et al.  Interpretation paleoecologique et relations biogeographiques de la faune de vertebrees du miocene superieur d'Injana, Irak , 1983 .

[27]  S. Legendre,et al.  Correlation of carnassial tooth size and body weight in recent carnivores (mammalia) , 1988 .

[28]  D. Pilbeam,et al.  The Miocene fossil beds of Maboko Island, Kenya: Geology, age, taphonomy and palaeontology , 1981 .

[29]  P. Andrews,et al.  Patterns of ecological diversity in fossil and modern mammalian faunas , 1979 .

[30]  K. Rose Composition and species diversity in Paleocene and Eocene mammal assemblages: an empirical study , 1981 .