Is Frequent Pattern Mining useful in building predictive models

The recent studies of pattern mining have given more attention to discovering patterns that are interesting, significant, discriminative and so forth, than simply frequent. Does this imply that the ...

[1]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[2]  Heikki Mannila,et al.  Discovering Frequent Episodes in Sequences , 1995, KDD.

[3]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[4]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[5]  Ramakrishnan Srikant,et al.  Mining Sequential Patterns: Generalizations and Performance Improvements , 1996, EDBT.

[6]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[7]  Philip S. Yu,et al.  Near-optimal Supervised Feature Selection among Frequent Subgraphs , 2009, SDM.

[8]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[9]  Bart Goethals,et al.  Frequent Set Mining , 2010, Data Mining and Knowledge Discovery Handbook.

[10]  Mohammad Al Hasan,et al.  MUSK: Uniform Sampling of k Maximal Patterns , 2009, SDM.

[11]  Bart Goethals,et al.  Survey on Frequent Pattern Mining , 2003 .

[12]  Henrik Boström,et al.  Graph Propositionalization for Random Forests , 2009, 2009 International Conference on Machine Learning and Applications.

[13]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[14]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[15]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[16]  Hannu Toivonen,et al.  Finding reliable subgraphs from large probabilistic graphs , 2008, Data Mining and Knowledge Discovery.

[17]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[18]  Aristides Gionis,et al.  Approximating a collection of frequent sets , 2004, KDD.

[19]  Luc De Raedt,et al.  Correlated itemset mining in ROC space: a constraint programming approach , 2009, KDD.

[20]  R. Biswas,et al.  Metagraph-Based Substructure Pattern Mining , 2008, 2008 International Conference on Advanced Computer Theory and Engineering.

[21]  Takashi Washio,et al.  An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data , 2000, PKDD.

[22]  Jiawei Han,et al.  Discriminative Frequent Pattern Analysis for Effective Classification , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[23]  Wilfred Ng,et al.  Correlated pattern mining in quantitative databases , 2008, TODS.

[24]  Thorsten Meinl,et al.  A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston , 2005, PKDD.

[25]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[26]  Andreas Zell,et al.  Graph kernels for chemical compounds using topological and three-dimensional local atom pair environments , 2010, Neurocomputing.

[27]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[28]  Christian Borgelt,et al.  Simple Algorithms for Frequent Item Set Mining , 2010, Advances in Machine Learning II.

[29]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[30]  Lawrence B. Holder,et al.  Subdue: compression-based frequent pattern discovery in graph data , 2005 .

[31]  Jiawei Han,et al.  Mining closed relational graphs with connectivity constraints , 2005, 21st International Conference on Data Engineering (ICDE'05).

[32]  Yuji Matsumoto,et al.  An Application of Boosting to Graph Classification , 2004, NIPS.

[33]  Mohammed J. Zaki,et al.  Efficient algorithms for mining closed itemsets and their lattice structure , 2005, IEEE Transactions on Knowledge and Data Engineering.

[34]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[35]  Jiong Yang,et al.  SPIN: mining maximal frequent subgraphs from graph databases , 2004, KDD.

[36]  Joost N. Kok,et al.  Frequent subgraph miners: runtimes don't say everything , 2006 .

[37]  Ambuj K. Singh,et al.  GraphSig: A Scalable Approach to Mining Significant Subgraphs in Large Graph Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[38]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[39]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[40]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[41]  Wei Wang,et al.  GAIA: graph classification using evolutionary computation , 2010, SIGMOD Conference.

[42]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[43]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[44]  Jilles Vreeken,et al.  Krimp: mining itemsets that compress , 2011, Data Mining and Knowledge Discovery.

[45]  Bart Goethals,et al.  Advances in frequent itemset mining implementations: report on FIMI'03 , 2004, SKDD.

[46]  Guizhen Yang,et al.  The complexity of mining maximal frequent itemsets and maximal frequent patterns , 2004, KDD.

[47]  Soon Myoung Chung,et al.  Efficient Mining of Maximal Sequential Patterns Using Multiple Samples , 2005, SDM.

[48]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[49]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[50]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.