Stability of Twisted States in the Kuramoto Model on Cayley and Random Graphs

The Kuramoto model of coupled phase oscillators on complete, Paley, and Erdős–Rényi (ER) graphs is analyzed in this work. As quasirandom graphs, the complete, Paley, and ER graphs share many structural properties. For instance, they exhibit the same asymptotics of the edge distributions, homomorphism densities, graph spectra, and have constant graph limits. Nonetheless, we show that the asymptotic behavior of solutions in the Kuramoto model on these graphs can be qualitatively different. Specifically, we identify twisted states, steady-state solutions of the Kuramoto model on complete and Paley graphs, which are stable for one family of graphs but not for the other. On the other hand, we show that the solutions of the initial value problems for the Kuramoto model on complete and random graphs remain close on finite time intervals, provided they start from close initial conditions and the graphs are sufficiently large. Therefore, the results of this paper elucidate the relation between the network structure and dynamics in coupled nonlinear dynamical systems. Furthermore, we present new results on synchronization and stability of twisted states for the Kuramoto model on Cayley and random graphs.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  S Yanchuk,et al.  Spectral properties of chimera states. , 2011, Chaos.

[3]  Lee DeVille,et al.  Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. , 2011, Chaos.

[4]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[5]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[6]  S. Strogatz,et al.  Constants of motion for superconducting Josephson arrays , 1994 .

[7]  Carlo R Laing,et al.  Partially coherent twisted states in arrays of coupled phase oscillators. , 2014, Chaos.

[8]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[9]  Georgi S. Medvedev,et al.  The Nonlinear Heat Equation on W-Random Graphs , 2013, 1305.2167.

[10]  O. Omel'chenko,et al.  Coherence–incoherence patterns in a ring of non-locally coupled phase oscillators , 2013 .

[11]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[12]  S. Strogatz,et al.  The spectrum of the locked state for the Kuramoto model of coupled oscillators , 2005 .

[13]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[14]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[15]  Georgi S. Medvedev,et al.  Stochastic Stability of Continuous Time Consensus Protocols , 2010, SIAM J. Control. Optim..

[16]  V. I. Arnolʹd Bifurcation theory and catastrophe theory , 1994 .

[17]  R. Graham,et al.  Quasi-Random Graphs , 1988 .

[18]  Y. Kuramoto,et al.  Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators , 2002, cond-mat/0210694.

[19]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[20]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[21]  Edgar Knobloch,et al.  Multicluster and traveling chimera states in nonlocal phase-coupled oscillators. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Georgi S. Medvedev,et al.  The Nonlinear Heat Equation on Dense Graphs and Graph Limits , 2013, SIAM J. Math. Anal..

[23]  S. Strogatz,et al.  The size of the sync basin. , 2006, Chaos.

[24]  Steven H. Strogatz,et al.  Chimera States in a Ring of Nonlocally Coupled oscillators , 2006, Int. J. Bifurc. Chaos.

[25]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[26]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[27]  Fan Chung Graham,et al.  On the Spectra of General Random Graphs , 2011, Electron. J. Comb..

[28]  A. Thomason Pseudo-Random Graphs , 1987 .

[29]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[30]  Yoshiki Kuramoto,et al.  Cooperative Dynamics of Oscillator Community : A Study Based on Lattice of Rings , 1984 .

[31]  Georgi S. Medvedev,et al.  Small-world networks of Kuramoto oscillators , 2013, 1307.0798.

[32]  W. Magnus,et al.  Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .

[33]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[34]  Georgi S. Medvedev,et al.  The Geometry of Spontaneous Spiking in Neuronal Networks , 2011, J. Nonlinear Sci..

[35]  Martin Hasler,et al.  Multistability of twisted states in non-locally coupled Kuramoto-type models. , 2012, Chaos.

[36]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[37]  P. Billingsley,et al.  Probability and Measure , 1980 .

[38]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[39]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[40]  Pierre-Antoine Absil,et al.  On the stable equilibrium points of gradient systems , 2006, Syst. Control. Lett..

[41]  Mike Krebs,et al.  Expander Families and Cayley Graphs: A Beginner's Guide , 2011 .