Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization

Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design process includes building a database composed of published experimental results, applying machine learning methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accelerating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical optimization. Machine learning regression models were trained to predict magnetic saturation ($B_S$), coercivity ($H_C$) and magnetostriction ($\lambda$), with a stochastic optimization framework being used to further optimize the corresponding magnetic properties. To verify the feasibility of the machine learning model, several optimized soft magnetic materials -- specified in terms of compositions and thermomechanical treatments -- have been predicted and then prepared and tested, showing good agreement between predictions and experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations were conducted to search for better properties.

[1]  Victorino Franco,et al.  Magnetic properties and nanocrystallization of a Fe63.5Cr10Si13.5B9Cu1Nb3 alloy , 1999 .

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  F. Pfeifer,et al.  Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects , 1980 .

[4]  V. Prida,et al.  Correlation between structure, magnetic properties and MI effect during the nanocrystallisation process of FINEMET type alloys , 2001 .

[5]  Hui Xu,et al.  Structure and magnetic properties of Fe73.5Ag1Nb3Si13.5B9 alloy , 2000 .

[6]  Jozef Sitek,et al.  Effects of substitution of Mo for Nb on less-common properties of Finemet alloys , 2010 .

[7]  I. Gościańska,et al.  Influence of Substitutions on Crystallization and Magnetic Properties of Finemet-based Nanocrystalline Alloys and Thin Films , 2004 .

[8]  Giselher Herzer Modern Soft Magnets: Amorphous and Nanocrystalline Materials , 2013 .

[9]  A. Lovas,et al.  Saturation magnetization and amorphous Curie point changes during the early stage of amorphous–nanocrystalline transformation of a FINEMET-type alloy , 2000 .

[10]  Pilar Marín,et al.  Influence of Cr additions in magnetic properties and crystallization process of amorphous iron based alloys , 2002 .

[11]  R. A. Buckley,et al.  New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification , 1993 .

[12]  Peter Švec,et al.  Influence of heat treatment on magnetostrictions of Finemet Fe73.5CU1Nb3Si3.5B9 , 1997 .

[13]  J. M. Borrego,et al.  Structural relaxation processes in FeSiB-Cu(Nb, X), X=Mo, V, Zr, Nb glassy alloys , 2001 .

[14]  Masaki Nakano,et al.  Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy , 2005 .

[15]  T. Keménya,et al.  Structure and magnetic properties of nanocrystalline soft ferromagnets , 2001 .

[16]  Akihiro Makino,et al.  Magnetic properties and microstructure of nanocrystalline bcc Fe-M-B (M=Zr,Hf,Nb) alloys , 1994 .

[17]  Frederic Mazaleyrat,et al.  Effective magnetic anisotropy and internal demagnetization investigations in soft magnetic nanocrystalline alloys , 2000 .

[18]  Frederic Mazaleyrat,et al.  Thermo-magnetic transitions in two-phase nanostructured materials , 2001 .

[19]  Ming Hu,et al.  Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation , 2020, Computational Materials Science.

[20]  Akihiro Makino,et al.  Low Core Loss of a bcc Fe86Zr7B6Cu1 Alloy with Nanoscale Grain Size , 1991 .

[21]  Elena. E. Shalygina,et al.  Structural and magnetic properties of Fe , 2015 .

[22]  Nicolae D Suliţanu,et al.  Nanostructure formation and soft magnetic properties evolution in Fe91−xWxB9 amorphous alloys , 2002 .

[23]  J. Eckert,et al.  Microstructure evolution and soft magnetic properties of Fe72-xNbxAl5Ga2P11C6B4 (x = 0, 2) metallic glasses , 2002 .

[24]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[25]  Yan-chao Xu,et al.  Structure and magnetic properties of Si-rich FeAlSiBNbCu alloys , 2015 .

[26]  Akihiro Makino,et al.  Microstructure and properties of nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with low magnetostriction , 2001 .

[27]  Y. Yoshizawa,et al.  New Fe-based soft magnetic alloys composed of ultrafine grain structure , 1988 .

[28]  Rui Xiang,et al.  Effect of Nb addition on the magnetic properties and microstructure of FePCCu nanocrystalline alloy , 2015, Journal of Materials Science: Materials in Electronics.

[29]  H. Sirkin,et al.  Magnetic properties and structural evolution of FINEMET alloys with Ge addition , 2004 .

[30]  Zbigniew Kaczkowski,et al.  Magnetostriction of the Fe73.5Cu1Ta2Nb1Si13.5B9 alloy , 2000 .

[31]  Akihiro Makino,et al.  Nanocrystalline Soft Magnetic Fe-Si-B-P-Cu Alloys With High $B$ of 1.8–1.9T Contributable to Energy Saving , 2012, IEEE Transactions on Magnetics.

[32]  H. Sirkin,et al.  Crystallization Process of Fe Based Amorphous Alloys: Mechanical and Magnetic Properties , 2002 .

[33]  Akihiro Makino,et al.  High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B Alloys with Ultrafine Grain Structure , 1990 .

[34]  Nirupam Chakraborti,et al.  Combined machine learning and CALPHAD approach for discovering processing-structure relationships in soft magnetic alloys , 2017, Computational Materials Science.

[35]  H. Fujita,et al.  Magnetic properties of fine crystalline Fe–P–C–Cu–X alloys , 1991 .

[36]  J. M. Greneche,et al.  Devitrification process of FeSiBCuBbX nanocrystalline alloys: Mössbauer study of the intergranular phase , 2000 .

[37]  Akihiro Makino,et al.  Soft magnetic properties of nanocrystalline bcc Fe‐Zr‐B and Fe‐M‐B‐Cu (M=transition metal) alloys with high saturation magnetization (invited) , 1991 .

[38]  Akihiro Makino,et al.  New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness , 2009 .

[39]  Anuj Upadhyay,et al.  A correlation between the magnetic and structural properties of isochronally annealed Cu-free FINEMET alloy with composition Fe72B19.2Si4.8Nb4 , 2015 .

[40]  Wei Lu,et al.  Microstructure and magnetic properties of Fe72.5Cu1M2V2Si13.5B9 (M=Nb, Mo, (NbMo), (MoW)) nanocrystalline alloys , 2010 .

[41]  V. V. Maslov,et al.  On determination of volume fraction of crystalline phase in partially crystallized amorphous and nanocrystalline materials , 2000 .

[42]  Masaki Nakano,et al.  Stress-induced magnetic and structural anisotropy of nanocrystalline Fe-based alloys , 2010 .

[43]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[44]  Chao Chen,et al.  Using Random Forest to Learn Imbalanced Data , 2004 .

[45]  Jiancheng Song,et al.  Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High Bs and Good Manufacturability , 2016, Journal of Electronic Materials.

[46]  R. V. Major,et al.  Evolution of structure and magnetic properties with annealing temperature in novel Al-containing alloys based on Finemet , 1999 .

[47]  Y. Yoshizawa,et al.  Magnetic Properties and Microstructure of Nanocrystalline Fe-Based Alloys , 1999 .

[48]  H. Sirkin,et al.  Evolution of magnetic, structural and mechanical properties in FeSiBNbCuAlGe system , 2002 .

[49]  Yang Li,et al.  Structure and soft magnetic properties of V-doped Finemet-type alloys , 2008 .

[50]  Guoqiang Xie,et al.  High Bs Fe84−xSi4B8P4Cux (x = 0 – 1.5) nanocrystalline alloys with excellent magnetic softness , 2011 .

[51]  Li Zhun,et al.  Core loss analysis of Finemet type nanocrystalline alloy ribbon with different thickness , 2017 .

[52]  M. Ohta,et al.  New High-Bs Fe-Based Nanocrystalline Soft Magnetic Alloys , 2007 .

[53]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[54]  Nobuyoshi Hara,et al.  Effect of substitution of Cu by Au and Ag on nanocrystallization behavior of Fe83.3Si4B8P4Cu0.7 soft magnetic alloy , 2016 .

[55]  Shigeyoshi Yoshida,et al.  Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited) , 2011 .

[56]  Jozef Kováč,et al.  Study of Fe–Zr–U–B and Fe–Zr–U–Cu–B nanocrystalline alloys , 2000 .

[57]  Bela Varga,et al.  Survey of magnetic properties during and after amorphous-nanocrystalline transformation , 1998 .

[58]  Yan Zhang,et al.  Influence of microstructure on soft magnetic properties of low coreloss and high Bs Fe85Si2B8P4Cu1 nanocrystalline alloy , 2014 .

[59]  G. Haneczok,et al.  Optimisation of soft magnetic properties in Fe–Cu–X–Si13B9 (X=Cr, Mo, Zr) amorphous alloys , 2001 .

[60]  Balachandran Jeyadevan,et al.  Low-temperature magnetic properties and the crystallization behavior of FINEMET alloy , 2003 .

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[63]  Matthew A. Willard,et al.  Nanocrystalline Soft Magnetic Alloys Two Decades of Progress , 2013 .

[64]  Takashi Matsunaga,et al.  Soft Magnetic Properties of bcc Fe–Au–X–Si–B (X=Early Transition Metal) Alloys with Fine Grain Structure , 1989 .

[65]  Pavol Sovak,et al.  On the Role of Aluminum in Finemet , 2002 .

[66]  R. V. Major,et al.  Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys , 2000 .

[67]  J. M. Longo,et al.  Structure and magnetic properties of VOSO4 , 1970 .

[68]  Kiyotaka Yamauchi,et al.  Magnetic Properties of Nanocrystalline Fe-Based Soft Magnetic Alloys , 1991 .

[69]  G. Herzer,et al.  Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets , 1990, International Conference on Magnetics.

[70]  Jake Graser,et al.  Can machine learning find extraordinary materials , 2020 .

[71]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[72]  Xingguo Zhang,et al.  Study on soft magnetic properties of Finemet‐type nanocrystalline alloys with Mo substituting for Nb , 2017 .

[73]  W. L. Liu,et al.  Investigation of microstructure and magnetic properties of Fe81Si4B12−xP2Cu1Mx (M = Cr, Mn and V; x = 0, 1, 2, 3) melt spun ribbons , 2015 .

[74]  Roland Grössinger,et al.  Temperature Dependence of the Magnetostriction in α-Fe100-xSix and FINEMET Type Alloys , 1999 .

[75]  T. Tomida,et al.  Crystallization of Fe-Si-B-Ga-Nb amorphous alloy , 1994 .

[76]  Artur Chrobak,et al.  Optimization of soft magnetic properties in nanoperm type alloys , 2003 .

[77]  Enzo Ferrara,et al.  Contribution of the crystalline phase Fe/sub 100-x/Si/sub x/ to the temperature dependence of magnetic properties of FINEMET-type alloys , 2000 .

[78]  Wei Zhang,et al.  Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations , 2017 .

[79]  J. K. Chen,et al.  Local structure, nucleation sites and crystallization behavior and their effects on magnetic properties of Fe81SixB10P8−xCu1 (x = 0~8) , 2018, Scientific Reports.

[80]  N. H. Luong,et al.  Influence of P substitution for B on the structure and properties of nanocrystalline Fe73.5Si15.5Nb3Cu1B7−xPx alloys , 2003 .

[81]  G. Filoti,et al.  Nanocrystallization of soft magnetic Finemet-type amorphous ribbons , 2003 .

[82]  Shigeyoshi Yoshida,et al.  Fe–B–P–Cu nanocrystalline soft magnetic alloys with high Bs , 2011 .

[83]  M. Ashby MULTI-OBJECTIVE OPTIMIZATION IN MATERIAL DESIGN AND SELECTION , 2000 .

[84]  N. Q. Hoa,et al.  The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties , 2006 .

[85]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[86]  Pavol Sovak,et al.  Structure and magnetic behaviour of Fe–Cu–Nb–Si–B–Al alloys , 2000 .

[87]  Sang Ho Lim,et al.  Effects of Al on the magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys , 1993 .

[88]  Akihisa Inoue,et al.  Soft Magnetic Fe–Zr–Si–B Alloys with Nanocrystalline Structure , 1995 .

[89]  Jae-Sung Song,et al.  Magnetic properties of very high permeability, low coercivity, and high electrical resistivity in Fe87Zr7B5Ag1 amorphous alloy , 1995 .

[90]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[91]  Victorino Franco,et al.  Mo-containing Finemet alloys: microstructure and magnetic properties , 2001 .

[92]  Ivan Škorvánek,et al.  Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy , 2002 .

[93]  Mike R. J. Gibbs,et al.  Nanocrystallite compositions for Al- and Mo-containing Finemet-type alloys , 2001 .

[94]  Ivan Škorvánek,et al.  MOSSBAUER STUDY OF THE MAGNETIC PROPERTIES OF NANOCRYSTALLINE FE80.5NB7B12.5 ALLOY , 1999 .

[95]  Guoqiang Xie,et al.  Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy , 2018 .