Perceptually driven interactive geometry remeshing

Visual patterns on the surface of an object, such as two dimensional texture, are taken into consideration as part of the geometry remeshing process. Given a parameterized mesh and a texture map, the visual perceptual properties of the texture are first computed using a visual discrimination metric. This precomputation is then used to guide the distribution of samples to the surface mesh. The system automatically distributes few samples to texture areas with strong visual masking properties and more samples to texture areas with weaker visual masking properties. In addition, due to contrast considerations, brighter areas receive fewer samples than do darker surface features. Because of the properties of the human visual system, especially visual masking, the artifacts in the rendered mesh are invisible to the human observer. For a fixed number of polygons, this approach also improves the quality of the rendered mesh since the distribution of the samples is guided by the principles of visual perception. The utility of the system is demonstrated by showing that it can also account for other observable patterns on the surface, besides two dimensional texture, such as those produced by bump mapping, lighting variations, surface reflectance, and interreflections.

[1]  Dinesh Manocha,et al.  Appearance-Perserving Simplification. , 1998, SIGGRAPH 1998.

[2]  Gabriel Taubin,et al.  Space‐Optimized Texture Maps , 2002 .

[3]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[4]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[5]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[6]  John C. Hart,et al.  Painting detail , 2004, ACM Trans. Graph..

[7]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, IEEE Visualization.

[8]  Pedro V. Sander,et al.  Signal-specialized parameterization for piecewise linear reconstruction , 2004, SGP '04.

[9]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[10]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[11]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[12]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[13]  Donald P. Greenberg,et al.  A model of visual masking for computer graphics , 1997, SIGGRAPH.

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  Donald P. Greenberg,et al.  Using Perceptual Texture Masking for Efficient Image Synthesis , 2002, Comput. Graph. Forum.

[16]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[17]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[18]  Victor Ostromoukhov,et al.  Fast hierarchical importance sampling with blue noise properties , 2004, ACM Trans. Graph..

[19]  Greg Turk,et al.  Image-driven simplification , 2000, TOGS.

[20]  Xiaoru Yuan,et al.  Geometry completion and detail generation by texture synthesis , 2005, The Visual Computer.

[21]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[22]  Fabio Pellacini,et al.  Perceptually-driven decision theory for interactive realistic rendering , 2003, TOGS.

[23]  Klaus Mueller,et al.  Uniform texture synthesis and texture mapping using global parameterization , 2005, The Visual Computer.

[24]  Karol Myszkowski,et al.  Using the visual differences predictor to improve performance of progressive global illumination computation , 2000, TOGS.

[25]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[26]  Xiaoru Yuan,et al.  Stippling and silhouettes rendering in geometry-image space , 2005, EGSR '05.

[27]  Jeffrey Lubin,et al.  A VISUAL DISCRIMINATION MODEL FOR IMAGING SYSTEM DESIGN AND EVALUATION , 1995 .

[28]  Benjamin Watson,et al.  Supra-threshold control of peripheral LOD , 2004, ACM Trans. Graph..

[29]  Martin Reddy,et al.  Perceptually Optimized 3D Graphics , 2001, IEEE Computer Graphics and Applications.

[30]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[31]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[32]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[33]  G. Turk,et al.  Model simplification using image and geometry-based metrics , 2000 .

[34]  Donald P. Greenberg,et al.  A perceptually based physical error metric for realistic image synthesis , 1999, SIGGRAPH.

[35]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[36]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Mark Segal,et al.  Fast shadows and lighting effects using texture mapping , 1992, SIGGRAPH.

[38]  Gary W. Meyer,et al.  A perceptually based adaptive sampling algorithm , 1998, SIGGRAPH.

[39]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[40]  David P. Luebke,et al.  Perceptually-Driven Simplification for Interactive Rendering , 2001, Rendering Techniques.

[41]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[43]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[44]  Jonathan D. Cohen,et al.  Perceptually guided simplification of lit, textured meshes , 2003, I3D '03.

[45]  Gary W. Meyer,et al.  Implementation of a visual difference metric using commodity graphics hardware , 2004, IS&T/SPIE Electronic Imaging.