Co-Activation-Based Parcellation of the Lateral Prefrontal Cortex Delineates the Inferior Frontal Junction Area.

The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal sulcus (IFS), was subdivided via cluster analyses of voxel-wise whole-brain co-activation patterns. The ensuing clusters were characterized by their unique connections, the functional profiles of associated experiments, and an independent topic mapping approach. A cluster at the posterior end of the IFS matched previous descriptions of the IFJ in location and extent and could be distinguished from a more caudal cluster involved in motor control, a more ventral cluster involved in linguistic processing, and 3 more rostral clusters involved in other aspects of cognitive control. Overall, our findings highlight that the IFJ constitutes a core functional unit within the frontal lobe and delineate its borders. Implications for the IFJ's role in human cognition and the organizational principles of the frontal lobe are discussed.

[1]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[2]  D. V. von Cramon,et al.  The meta-analysis of functional imaging data using replicator dynamics , 2005 .

[3]  P. Hagoort On Broca, brain, and binding: a new framework , 2005, Trends in Cognitive Sciences.

[4]  T. Goschke,et al.  Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. , 2004, Acta psychologica.

[5]  S. Wise The primate premotor cortex: past, present, and preparatory. , 1985, Annual review of neuroscience.

[6]  Dag Alnæs,et al.  Top–Down Modulation from Inferior Frontal Junction to FEFs and Intraparietal Sulcus during Short-term Memory for Visual Features , 2013, Journal of Cognitive Neuroscience.

[7]  Angela R. Laird,et al.  Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation , 2011, NeuroImage.

[8]  K. Zilles,et al.  An investigation of the structural, connectional, and functional subspecialization in the human amygdala , 2012, Human brain mapping.

[9]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.

[10]  Mark G. Stokes,et al.  Attention Biases Visual Activity in Visual Short-term Memory , 2014, Journal of Cognitive Neuroscience.

[11]  Marcel Brass,et al.  The what and how components of cognitive control , 2012, NeuroImage.

[12]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[13]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[14]  M. Brass,et al.  The implementation of verbal instructions: An fMRI study , 2011, Human brain mapping.

[15]  A. Wagner,et al.  Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating , 2011, Annals of the New York Academy of Sciences.

[16]  Adam Gazzaley,et al.  Top-down modulation of visual feature processing: The role of the inferior frontal junction , 2010, NeuroImage.

[17]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[18]  Jonathan D. Cohen,et al.  The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses , 2012, PloS one.

[19]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[20]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[21]  Marcel Brass,et al.  Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity , 2014, NeuroImage.

[22]  D. Y. von Cramon,et al.  Functional organization of the left inferior precentral sulcus: Dissociating the inferior frontal eye field and the inferior frontal junction , 2012, NeuroImage.

[23]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[24]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[26]  Luke J. Chang,et al.  Connectivity-Based Parcellation of the Human Orbitofrontal Cortex , 2012, The Journal of Neuroscience.

[27]  M. Desmurget,et al.  A parietal-premotor network for movement intention and motor awareness , 2009, Trends in Cognitive Sciences.

[28]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[29]  Suk Won Han,et al.  The neural correlates of visual working memory encoding: A time-resolved fMRI study , 2011, Neuropsychologia.

[30]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[31]  M. Brass,et al.  The role of the frontal cortex in task preparation. , 2002, Cerebral cortex.

[32]  Angela R. Laird,et al.  Activation likelihood estimation meta-analysis revisited , 2012, NeuroImage.

[33]  Christopher L. Asplund,et al.  Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI , 2006, Neuron.

[34]  Hiroki M. Morimoto,et al.  Functional dissociation in right inferior frontal cortex during performance of go/no-go task. , 2009, Cerebral cortex.

[35]  Nancy Kanwisher,et al.  Broad domain generality in focal regions of frontal and parietal cortex , 2013, Proceedings of the National Academy of Sciences.

[36]  A. Aron,et al.  Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex , 2010, Proceedings of the National Academy of Sciences.

[37]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[38]  Christopher L. Asplund,et al.  A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention , 2010, Nature Neuroscience.

[39]  Angela R. Laird,et al.  Modelling neural correlates of working memory: A coordinate-based meta-analysis , 2012, NeuroImage.

[40]  Ben M. Crittenden,et al.  Task Difficulty Manipulation Reveals Multiple Demand Activity but no Frontal Lobe Hierarchy , 2012, Cerebral cortex.

[41]  Ruchi M. Newman,et al.  TRIM5 Suppresses Cross-Species Transmission of a Primate Immunodeficiency Virus and Selects for Emergence of Resistant Variants in the New Species , 2010, PLoS biology.

[42]  Nancy Kanwisher,et al.  Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area , 2012, Current Biology.

[43]  Angela R. Laird,et al.  Networks of task co-activations , 2013, NeuroImage.

[44]  Adam G. Thomas,et al.  The Organization of Dorsal Frontal Cortex in Humans and Macaques , 2013, The Journal of Neuroscience.

[45]  M. Davare,et al.  Behavioral / Systems / Cognitive Dissociating the Role of Ventral and Dorsal Premotor Cortex in Precision Grasping , 2018 .

[46]  Christopher L. Asplund,et al.  A Unified attentional bottleneck in the human brain , 2011, Proceedings of the National Academy of Sciences.

[47]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[48]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[49]  J. Duncan,et al.  Adaptive Coding of Task-Relevant Information in Human Frontoparietal Cortex , 2011, The Journal of Neuroscience.

[50]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.

[51]  R. Poldrack Inferring Mental States from Neuroimaging Data: From Reverse Inference to Large-Scale Decoding , 2011, Neuron.

[52]  Michael Andres,et al.  Transcranial Magnetic Stimulation Dissociates Prefrontal and Parietal Contributions to Task Preparation , 2014, The Journal of Neuroscience.

[53]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[54]  P. Fox,et al.  Functional Segregation of the Human Dorsomedial Prefrontal Cortex. , 2016, Cerebral cortex.

[55]  M. Brass,et al.  The role of the inferior frontal junction area in cognitive control , 2005, Trends in Cognitive Sciences.

[56]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[57]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[58]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[59]  M. Rushworth,et al.  Complementary localization and lateralization of orienting and motor attention , 2001, Nature Neuroscience.

[60]  Simon B Eickhoff,et al.  Meta-analysis in human neuroimaging: computational modeling of large-scale databases. , 2014, Annual review of neuroscience.

[61]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[62]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[63]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[64]  J. Duncan The Structure of Cognition: Attentional Episodes in Mind and Brain , 2013, Neuron.

[65]  G. Lohmann,et al.  Color-Word Matching Stroop Task: Separating Interference and Response Conflict , 2001, NeuroImage.

[66]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[67]  F. Tong,et al.  Training Improves Multitasking Performance by Increasing the Speed of Information Processing in Human Prefrontal Cortex , 2009, Neuron.

[68]  Simon B Eickhoff,et al.  Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses , 2012, Human brain mapping.

[69]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[70]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[71]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[72]  Angela R. Laird,et al.  Subspecialization in the human posterior medial cortex , 2015, NeuroImage.

[73]  Tianzi Jiang,et al.  Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches , 2015, Human brain mapping.

[74]  Jan Derrfuss,et al.  Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory , 2004, NeuroImage.

[75]  Joshua W. Brown,et al.  A meta-analysis of executive components of working memory. , 2013, Cerebral cortex.

[76]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[77]  Kimberly L. Ray,et al.  Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions , 2012, Cognitive, affective & behavioral neuroscience.

[78]  Joshua W. Brown,et al.  Dissociable frontal-striatal and frontal-parietal networks involved in updating hierarchical contexts in working memory. , 2013, Cerebral cortex.

[79]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[80]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[81]  Thomas R. Knösche,et al.  Who Comes First? The Role of the Prefrontal and Parietal Cortex in Cognitive Control , 2005, Journal of Cognitive Neuroscience.

[82]  Walter Schneider,et al.  The cognitive control network: Integrated cortical regions with dissociable functions , 2007, NeuroImage.

[83]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[84]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[85]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[86]  N. Kanwisher,et al.  New method for fMRI investigations of language: defining ROIs functionally in individual subjects. , 2010, Journal of neurophysiology.

[87]  M. Rushworth,et al.  The left parietal and premotor cortices: motor attention and selection , 2003, NeuroImage.

[88]  Karl J. Friston,et al.  Lateralized Cognitive Processes and Lateralized Task Control in the Human Brain , 2003, Science.

[89]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[90]  M. Petrides The role of the mid-dorsolateral prefrontal cortex in working memory , 2000, Experimental Brain Research.

[91]  Angela R. Laird,et al.  Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44 , 2013, NeuroImage.

[92]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[93]  M. Brass,et al.  Involvement of the inferior frontal junction in cognitive control: Meta‐analyses of switching and Stroop studies , 2005, Human brain mapping.

[94]  Bernard Mazoyer,et al.  Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing , 2006, NeuroImage.

[95]  Hannes Ruge,et al.  Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. , 2010, Cerebral cortex.

[96]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[97]  Angela R. Laird,et al.  Is There “One” DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation , 2012, Cerebral cortex.

[98]  David Badre,et al.  Functional Magnetic Resonance Imaging Evidence for a Hierarchical Organization of the Prefrontal Cortex , 2007, Journal of Cognitive Neuroscience.

[99]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[100]  Mark D'Esposito,et al.  Influence of Motivation on Control Hierarchy in the Human Frontal Cortex , 2015, The Journal of Neuroscience.

[101]  C. Kelly,et al.  The extrinsic and intrinsic functional architectures of the human brain are not equivalent. , 2013, Cerebral cortex.

[102]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[103]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[104]  Theodore P. Zanto,et al.  Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory , 2011, Nature Neuroscience.

[105]  Marcel Brass,et al.  Selection for Cognitive Control: A Functional Magnetic Resonance Imaging Study on the Selection of Task-Relevant Information , 2004, The Journal of Neuroscience.

[106]  M. Brass,et al.  Neural activations at the junction of the inferior frontal sulcus and the inferior precentral sulcus: Interindividual variability, reliability, and association with sulcal morphology , 2009, Human brain mapping.

[107]  Timothy O. Laumann,et al.  Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations , 2013, Cerebral cortex.

[108]  C. Curtis,et al.  Persistent activity in the prefrontal cortex during working memory , 2003, Trends in Cognitive Sciences.

[109]  Joshua W. Brown,et al.  Rostral–caudal gradients of abstraction revealed by multi-variate pattern analysis of working memory , 2012, NeuroImage.

[110]  Timothy O. Laumann,et al.  An approach for parcellating human cortical areas using resting-state correlations , 2014, NeuroImage.

[111]  M. Petrides,et al.  Broca’s region: linking human brain functional connectivity data and non‐human primate tracing anatomy studies , 2010, The European journal of neuroscience.

[112]  Angela R. Laird,et al.  BrainMap , 2007, Neuroinformatics.

[113]  M. Brass,et al.  Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging , 2004, Journal of Cognitive Neuroscience.

[114]  E. Miller,et al.  Neural circuits subserving the retrieval and maintenance of abstract rules. , 2003, Journal of neurophysiology.

[115]  Nikolaus Weiskopf,et al.  Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory , 2011, Proceedings of the National Academy of Sciences.

[116]  R. Desimone,et al.  Neural Mechanisms of Object-Based Attention , 2014, Science.

[117]  Noam Harel,et al.  Interoperable atlases of the human brain , 2014, NeuroImage.

[118]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[119]  Angela D Friederici,et al.  The language network , 2012, Current Opinion in Neurobiology.

[120]  Marc Brysbaert,et al.  Complementary hemispheric specialization for language production and visuospatial attention , 2013, Proceedings of the National Academy of Sciences.

[121]  S Dehaene,et al.  A neuronal model of a global workspace in effortful cognitive tasks. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[123]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[124]  B. Gold,et al.  Common and Distinct Mechanisms of Cognitive Flexibility in Prefrontal Cortex , 2011, The Journal of Neuroscience.

[125]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[126]  E. Koechlin,et al.  Motivation and cognitive control in the human prefrontal cortex , 2009, Nature Neuroscience.